To address the planning issue of offshore oil-field power systems, an integrated generation-transmission expansion planning model is proposed. The outage cost is considered and the genetic Tabu hybrid algorithm(GTHA)i...To address the planning issue of offshore oil-field power systems, an integrated generation-transmission expansion planning model is proposed. The outage cost is considered and the genetic Tabu hybrid algorithm(GTHA)is developed to find the optimal solution. With the proposed integrated model, the planning of generators and transmission lines can be worked out simultaneously,which outweighs the disadvantages of separate planning,for instance, unable to consider the influence of power grid during the planning of generation, or insufficient to plan the transmission system without enough information of generation. The integrated planning model takes into account both the outage cost and the shipping cost, which makes the model more practical for offshore oilfield power systems. The planning problem formulated based on the proposed model is a mixed integer nonlinear programming problem of very high computational complexity, which is difficult to solve by regular mathematical methods. A comprehensive optimization method based on GTHA is also developed to search the best solution efficiently.Finally, a case study on the planning of a 50-bus offshore oilfield power system is conducted, and the obtained results fully demonstrate the effectiveness of the presented model and method.展开更多
With the new development trend of multi-resource coordinated Earth observation and the new goal of Earth observation application of“short response time,high observation accuracy,and wide coverage”,space-aeronautics ...With the new development trend of multi-resource coordinated Earth observation and the new goal of Earth observation application of“short response time,high observation accuracy,and wide coverage”,space-aeronautics cooperative complex task planning problem has become an urgent problem to be solved.The focus of this problem is to use multiple resources to perform collaborative observations on complex tasks.By analyzing the process from task assignment to receiving task observation results,we propose a multi-layer interactive task planning framework which is composed of a preprocessing method for complex tasks,a task allocation layer,a task planning layer,and a task coordination layer.According to the characteristics of the framework,a hybrid genetic parallel tabu(HGPT)algorithm is proposed on this basis.The algorithm uses genetic annealing algorithm(GAA),parallel tabu(PT)algorithm,and heuristic rules to achieve task allocation,task planning,and task coordination.At the same time,coding improvements,operator design,annealing operations,and parallel calculations are added to the algorithm.In order to verify the effectiveness of the algorithm,simulation experiments under complex task scenarios of different scales are carried out.Experimental results show that this method can effectively solve the problems of observing complex tasks.Meanwhile,the optimization effect and convergence speed of the HGPT is better than that of the related algorithms.展开更多
基金supported by National Natural Science Foundation of China (No. 51322701)National High Technology Research and Development Program of China (863 Program) (No. 2012AA050216)
文摘To address the planning issue of offshore oil-field power systems, an integrated generation-transmission expansion planning model is proposed. The outage cost is considered and the genetic Tabu hybrid algorithm(GTHA)is developed to find the optimal solution. With the proposed integrated model, the planning of generators and transmission lines can be worked out simultaneously,which outweighs the disadvantages of separate planning,for instance, unable to consider the influence of power grid during the planning of generation, or insufficient to plan the transmission system without enough information of generation. The integrated planning model takes into account both the outage cost and the shipping cost, which makes the model more practical for offshore oilfield power systems. The planning problem formulated based on the proposed model is a mixed integer nonlinear programming problem of very high computational complexity, which is difficult to solve by regular mathematical methods. A comprehensive optimization method based on GTHA is also developed to search the best solution efficiently.Finally, a case study on the planning of a 50-bus offshore oilfield power system is conducted, and the obtained results fully demonstrate the effectiveness of the presented model and method.
基金the National Natural Science Foundation of China(72001212).
文摘With the new development trend of multi-resource coordinated Earth observation and the new goal of Earth observation application of“short response time,high observation accuracy,and wide coverage”,space-aeronautics cooperative complex task planning problem has become an urgent problem to be solved.The focus of this problem is to use multiple resources to perform collaborative observations on complex tasks.By analyzing the process from task assignment to receiving task observation results,we propose a multi-layer interactive task planning framework which is composed of a preprocessing method for complex tasks,a task allocation layer,a task planning layer,and a task coordination layer.According to the characteristics of the framework,a hybrid genetic parallel tabu(HGPT)algorithm is proposed on this basis.The algorithm uses genetic annealing algorithm(GAA),parallel tabu(PT)algorithm,and heuristic rules to achieve task allocation,task planning,and task coordination.At the same time,coding improvements,operator design,annealing operations,and parallel calculations are added to the algorithm.In order to verify the effectiveness of the algorithm,simulation experiments under complex task scenarios of different scales are carried out.Experimental results show that this method can effectively solve the problems of observing complex tasks.Meanwhile,the optimization effect and convergence speed of the HGPT is better than that of the related algorithms.