期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of mechanical activation on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation tailings 被引量:2
1
作者 Ermolovich E.A. Ermolovich O.V. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1043-1049,共7页
The effects of mechanical activation in a planetary mill on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation railings generated by wet magnetic separa... The effects of mechanical activation in a planetary mill on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation railings generated by wet magnetic separation process were studied using X-ray and laser diffraction methods. The results revealed the relationship between variations in the mean particle size of activated powders and the milling time. The crystallite size, microstrain, lattice parameters and unit cell volumes were determined for different milling times in powder samples of quartz, hematite, dolomite, and magnetite from the beneficiation tailings. The main trends in the variation of the crystallite size of quartz, hematite, dolomite, and magnetite as a function mean particle size of powder samples were revealed. Changes in the particle shape as a function of the activation time was also investigated. 展开更多
关键词 Ferruginous quartzite beneficiation tailings Mechanical activation Crystallites Planetary mill Microstructure Structural changes
下载PDF
In-service Structural Health Monitoring of a Full-scale Composite Horizontal Tail
2
作者 武湛君 GAO Dongyue +1 位作者 WANG Yishou Gorgin RAHIM 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1215-1224,共10页
In-service structural health monitoring(SHM) technologies are critical for the utilization of composite aircraft structures. We developed a Lamb wave-based in-service SHM technology using built-in piezoelectric actu... In-service structural health monitoring(SHM) technologies are critical for the utilization of composite aircraft structures. We developed a Lamb wave-based in-service SHM technology using built-in piezoelectric actuator/sensor networks to monitor delamination extension in a full-scale composite horizontal tail. The in-service SHM technology combine of damage rapid monitoring(DRM) stage and damage imaging diagnosis(DID) stage allows for real-time monitoring and long term tracking of the structural integrity of composite aircraft structures. DRM stage using spearman rank correlation coeffi cient was introduced to generate a damage index which can be used to monitor the trend of damage extension. The DID stage based on canonical correlation analysis aimed at intuitively highlighting structural damage regions in two-dimensional images. The DRM and DID stages were trialed by an in-service SHM experiment of CFRP T-joint. Finally, the detection capability of the in-service SHM technology was verified in the SHM experiment of a full-scale composite horizontal tail. Experimental results show that the rapid monitoring method effectively monitors the damage occurrence and extension tendency in real time; damage imaging diagnosis results are consistent with those from the failure model of the composite horizontal tail structure. 展开更多
关键词 in-service structural health monitoring full-scale composite horizontal tail lamb wave damage rapid monitoring damage imaging diagnosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部