This paper has found out some important input factors of reverse logistics in manufacturing system throuth analysis and summary,and established four kinds of technological process control models of reverse logistics i...This paper has found out some important input factors of reverse logistics in manufacturing system throuth analysis and summary,and established four kinds of technological process control models of reverse logistics in manufacturing system according to different processing methods. These models embed each other that form a cubic control system of reverse logistics.展开更多
In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), ob...In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST.展开更多
The productivity of an organization is very much affected by non-value adding activity like logistics, which moves the resources from suppliers to factory, raw materials/semi-finished items within the factory and fini...The productivity of an organization is very much affected by non-value adding activity like logistics, which moves the resources from suppliers to factory, raw materials/semi-finished items within the factory and finished goods from factory to customers via a designated distribution channel called as forward logistics. In some cases, parts of the products such as automobiles, computers, cameras, mobile phones, washing machines, refrigerators, garments, footwear and empty glass bottles of beverages, etc. will be brought back to the factories as a product recovery strategy through reverse logistics network which is integrated in a sustainable closed loop supply chain network. So, it is highly essential to optimize the movement of the items in the reverse logistics network. This paper gives a comprehensive review of literature of the design of networks for the reverse logistics as well as for the reverse logistics coupled with forward logistics. The contributions of the researchers are classified into nine categories based on the methods used to design the logistics network.展开更多
文摘This paper has found out some important input factors of reverse logistics in manufacturing system throuth analysis and summary,and established four kinds of technological process control models of reverse logistics in manufacturing system according to different processing methods. These models embed each other that form a cubic control system of reverse logistics.
文摘In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST.
文摘The productivity of an organization is very much affected by non-value adding activity like logistics, which moves the resources from suppliers to factory, raw materials/semi-finished items within the factory and finished goods from factory to customers via a designated distribution channel called as forward logistics. In some cases, parts of the products such as automobiles, computers, cameras, mobile phones, washing machines, refrigerators, garments, footwear and empty glass bottles of beverages, etc. will be brought back to the factories as a product recovery strategy through reverse logistics network which is integrated in a sustainable closed loop supply chain network. So, it is highly essential to optimize the movement of the items in the reverse logistics network. This paper gives a comprehensive review of literature of the design of networks for the reverse logistics as well as for the reverse logistics coupled with forward logistics. The contributions of the researchers are classified into nine categories based on the methods used to design the logistics network.