As image manipulation technology advances rapidly,the malicious use of image tampering has alarmingly escalated,posing a significant threat to social stability.In the realm of image tampering localization,accurately l...As image manipulation technology advances rapidly,the malicious use of image tampering has alarmingly escalated,posing a significant threat to social stability.In the realm of image tampering localization,accurately localizing limited samples,multiple types,and various sizes of regions remains a multitude of challenges.These issues impede the model’s universality and generalization capability and detrimentally affect its performance.To tackle these issues,we propose FL-MobileViT-an improved MobileViT model devised for image tampering localization.Our proposed model utilizes a dual-stream architecture that independently processes the RGB and noise domain,and captures richer traces of tampering through dual-stream integration.Meanwhile,the model incorporating the Focused Linear Attention mechanism within the lightweight network(MobileViT).This substitution significantly diminishes computational complexity and resolves homogeneity problems associated with traditional Transformer attention mechanisms,enhancing feature extraction diversity and improving the model’s localization performance.To comprehensively fuse the generated results from both feature extractors,we introduce the ASPP architecture for multi-scale feature fusion.This facilitates a more precise localization of tampered regions of various sizes.Furthermore,to bolster the model’s generalization ability,we adopt a contrastive learning method and devise a joint optimization training strategy that leverages fused features and captures the disparities in feature distribution in tampered images.This strategy enables the learning of contrastive loss at various stages of the feature extractor and employs it as an additional constraint condition in conjunction with cross-entropy loss.As a result,overfitting issues are effectively alleviated,and the differentiation between tampered and untampered regions is enhanced.Experimental evaluations on five benchmark datasets(IMD-20,CASIA,NIST-16,Columbia and Coverage)validate the effectiveness of our proposed model.The meticulously calibrated FL-MobileViT model consistently outperforms numerous existing general models regarding localization accuracy across diverse datasets,demonstrating superior adaptability.展开更多
Two watermarks are embedded into the original image. One is the authentication watermark generated by secret key, which is embedded into the sub-LSB (Least Significant Bit) of the original image for tamper localizat...Two watermarks are embedded into the original image. One is the authentication watermark generated by secret key, which is embedded into the sub-LSB (Least Significant Bit) of the original image for tamper localization; the other is the recovery watermark for tamper recovering. The original image is divided into 8 x 8 blocks and each block is transformed by Discrete Cosine Transform (DCT). For each block, some lower frequency DCT coefficients are chosen to be quantized and binary encoded so as to gain the recovery watermark of each block, and the recovery watermark is embedded into the LSB of another block by chaos encryption and authentication chain technology. After the two watermarks being detected, the location of any minute changes in image can be detected, and the tampered image data can be recovered effectively. In the paper, the number of coefficients and their bit lengths are carefully chosen in order to satisfy with the payload of each block and gain the capability of self-recovering. The proposed algorithm can well resist against possible forged attacks. Experimental results show that the watermark generated by the proposed algorithm is sensitive to tiny changes in images, and it has higher accuracy of tamper localization and good capability of the tamper recovery.展开更多
In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information ...In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information of the original image is a challenging problem since unknown diverse manipulations may have different characteristics and so do various formats of images.Our principle is that image processing,no matter how complex,may affect image quality,so image quality metrics can be used to distinguish tampered images.In particular,based on the alteration of image quality in modified blocks,the proposed method can locate the tampered areas.Referring to four types of effective no-reference image quality metrics,we obtain 13 features to present an image.The experimental results show that the proposed method is very promising on detecting image tampering and locating the locally tampered areas especially in realistic scenarios.展开更多
Because there are different modification types of deleting characters and inserting characters in text documents, the algorithms for image authentication can not be used for text documents authentication directly. A t...Because there are different modification types of deleting characters and inserting characters in text documents, the algorithms for image authentication can not be used for text documents authentication directly. A text watermarking scheme for text document authentication is proposed in this paper. By extracting the features of character cascade together with the user secret key, the scheme combines the features of the text with the user information as a watermark which is embedded into the transformed text itself. The receivers can verify the integrity and the authentication of the text through the blind detection technique. A further research demonstrates that it can also localize the tamper, classify the type of modification, and recover part of modified text documents. The aforementioned conclusion has been proved by both our experiment results and analysis.展开更多
This paper proposed a novel fragile watermarking scheme based on singular value decomposition (SVD) and 2D chaotic mapping. It obtains chaotic initial values from the image blocks singular value decomposition and the ...This paper proposed a novel fragile watermarking scheme based on singular value decomposition (SVD) and 2D chaotic mapping. It obtains chaotic initial values from the image blocks singular value decomposition and the user’s key, then uses the chaotic mapping to get the chaotic sequence and inserts the sequence into the LSBs of the image blocks to get the watermarked image blocks. The paper reconstructed the watermarked image from all the embedded blocks. The analysis and experimental results show that the scheme is pretty fragile to tampering, and it can localize the tampering position accurately, reach 3×3 blocks.展开更多
基金This study was funded by the Science and Technology Project in Xi’an(No.22GXFW0123)this work was supported by the Special Fund Construction Project of Key Disciplines in Ordinary Colleges and Universities in Shaanxi Province,the authors would like to thank the anonymous reviewers for their helpful comments and suggestions.
文摘As image manipulation technology advances rapidly,the malicious use of image tampering has alarmingly escalated,posing a significant threat to social stability.In the realm of image tampering localization,accurately localizing limited samples,multiple types,and various sizes of regions remains a multitude of challenges.These issues impede the model’s universality and generalization capability and detrimentally affect its performance.To tackle these issues,we propose FL-MobileViT-an improved MobileViT model devised for image tampering localization.Our proposed model utilizes a dual-stream architecture that independently processes the RGB and noise domain,and captures richer traces of tampering through dual-stream integration.Meanwhile,the model incorporating the Focused Linear Attention mechanism within the lightweight network(MobileViT).This substitution significantly diminishes computational complexity and resolves homogeneity problems associated with traditional Transformer attention mechanisms,enhancing feature extraction diversity and improving the model’s localization performance.To comprehensively fuse the generated results from both feature extractors,we introduce the ASPP architecture for multi-scale feature fusion.This facilitates a more precise localization of tampered regions of various sizes.Furthermore,to bolster the model’s generalization ability,we adopt a contrastive learning method and devise a joint optimization training strategy that leverages fused features and captures the disparities in feature distribution in tampered images.This strategy enables the learning of contrastive loss at various stages of the feature extractor and employs it as an additional constraint condition in conjunction with cross-entropy loss.As a result,overfitting issues are effectively alleviated,and the differentiation between tampered and untampered regions is enhanced.Experimental evaluations on five benchmark datasets(IMD-20,CASIA,NIST-16,Columbia and Coverage)validate the effectiveness of our proposed model.The meticulously calibrated FL-MobileViT model consistently outperforms numerous existing general models regarding localization accuracy across diverse datasets,demonstrating superior adaptability.
基金Supported by the Special Fund of Doctor Subject of Ministry of Education (No.20060497005)
文摘Two watermarks are embedded into the original image. One is the authentication watermark generated by secret key, which is embedded into the sub-LSB (Least Significant Bit) of the original image for tamper localization; the other is the recovery watermark for tamper recovering. The original image is divided into 8 x 8 blocks and each block is transformed by Discrete Cosine Transform (DCT). For each block, some lower frequency DCT coefficients are chosen to be quantized and binary encoded so as to gain the recovery watermark of each block, and the recovery watermark is embedded into the LSB of another block by chaos encryption and authentication chain technology. After the two watermarks being detected, the location of any minute changes in image can be detected, and the tampered image data can be recovered effectively. In the paper, the number of coefficients and their bit lengths are carefully chosen in order to satisfy with the payload of each block and gain the capability of self-recovering. The proposed algorithm can well resist against possible forged attacks. Experimental results show that the watermark generated by the proposed algorithm is sensitive to tiny changes in images, and it has higher accuracy of tamper localization and good capability of the tamper recovery.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60971095 and No.61172109)Artificial Intelligence Key Laboratory of Sichuan Province(Grant No.2012RZJ01)the Fundamental Research Funds for the Central Universities(Grant No.DUT13RC201)
文摘In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information of the original image is a challenging problem since unknown diverse manipulations may have different characteristics and so do various formats of images.Our principle is that image processing,no matter how complex,may affect image quality,so image quality metrics can be used to distinguish tampered images.In particular,based on the alteration of image quality in modified blocks,the proposed method can locate the tampered areas.Referring to four types of effective no-reference image quality metrics,we obtain 13 features to present an image.The experimental results show that the proposed method is very promising on detecting image tampering and locating the locally tampered areas especially in realistic scenarios.
基金Supported by the National Natural Science Foun-dation of China (60373062 60573045)
文摘Because there are different modification types of deleting characters and inserting characters in text documents, the algorithms for image authentication can not be used for text documents authentication directly. A text watermarking scheme for text document authentication is proposed in this paper. By extracting the features of character cascade together with the user secret key, the scheme combines the features of the text with the user information as a watermark which is embedded into the transformed text itself. The receivers can verify the integrity and the authentication of the text through the blind detection technique. A further research demonstrates that it can also localize the tamper, classify the type of modification, and recover part of modified text documents. The aforementioned conclusion has been proved by both our experiment results and analysis.
文摘This paper proposed a novel fragile watermarking scheme based on singular value decomposition (SVD) and 2D chaotic mapping. It obtains chaotic initial values from the image blocks singular value decomposition and the user’s key, then uses the chaotic mapping to get the chaotic sequence and inserts the sequence into the LSBs of the image blocks to get the watermarked image blocks. The paper reconstructed the watermarked image from all the embedded blocks. The analysis and experimental results show that the scheme is pretty fragile to tampering, and it can localize the tampering position accurately, reach 3×3 blocks.