It is scientifically important science value and engineering promising to develop the buoyancy-lift integrated hybrid airship for high attitude platform.Through the numerical method,a new tandem wings hybrid airship w...It is scientifically important science value and engineering promising to develop the buoyancy-lift integrated hybrid airship for high attitude platform.Through the numerical method,a new tandem wings hybrid airship with both higher utility value and economy efficiency was obtained and its total performance and technical parameters were analyzed in detail.In order to further improve the lift-drag characteristics,we implemented the optimization design for aerodynamic configuration of tandem wings hybrid airship via the response surface method.The results indicate that the tandem wings hybrid airship has considerable volume efficiency and higher aerodynamic characteristics.After optimization,the lift-drag ratio of this hybrid airship was increased by 6.08%.In a given gross lift condition,tandem wings hybrid airship may provide more payload and specific productivity.Furthermore,the size of tandem airship is smaller so the demand for skin flexible materials can be reduced.Results of this study could serve as a new approach to designing buoyancy-lifting integrated hybrid airship.展开更多
Lagrangian Coherent Structures (LCS) of tandem wings hovering in an inclined stroke plane is studied using Immersed- Boundary Method (IBM) by solving two dimensional (2D) incompressible Navier-Stokes equations. ...Lagrangian Coherent Structures (LCS) of tandem wings hovering in an inclined stroke plane is studied using Immersed- Boundary Method (IBM) by solving two dimensional (2D) incompressible Navier-Stokes equations. Coherent structures re- sponsible for the force variation are visualized by calculating Finite Time Lyapunov Exponents (FTLE), and vorticity contours. LCS is effective in determining the vortex boundaries, flow separation, and the wing-vortex interactions accurately. The effects of inter-wing distance and phase difference on the force generation are studied. Results show that in-phase stroking generates maximum vertical force and counter-stroking generates the least vertical force. In-phase stroking generates a wake with swirl, and counter stroking generates a wake with predominant vertical velocity. Counter stroking aids the stability of the body in hovering. As the hindwing operates in the wake of the forewing, due to the reduction in the effective Angle of Attack (AoA), the hindwing generates lesser force than that of a single flapping wing.展开更多
基金supported by the National High-Tech Research and Development Program of China (Grant No. 863-2007AA11Z243)Foundation for Basic Research of Northwestern Polytechnic University (Grant No.JC-201103)
文摘It is scientifically important science value and engineering promising to develop the buoyancy-lift integrated hybrid airship for high attitude platform.Through the numerical method,a new tandem wings hybrid airship with both higher utility value and economy efficiency was obtained and its total performance and technical parameters were analyzed in detail.In order to further improve the lift-drag characteristics,we implemented the optimization design for aerodynamic configuration of tandem wings hybrid airship via the response surface method.The results indicate that the tandem wings hybrid airship has considerable volume efficiency and higher aerodynamic characteristics.After optimization,the lift-drag ratio of this hybrid airship was increased by 6.08%.In a given gross lift condition,tandem wings hybrid airship may provide more payload and specific productivity.Furthermore,the size of tandem airship is smaller so the demand for skin flexible materials can be reduced.Results of this study could serve as a new approach to designing buoyancy-lifting integrated hybrid airship.
文摘Lagrangian Coherent Structures (LCS) of tandem wings hovering in an inclined stroke plane is studied using Immersed- Boundary Method (IBM) by solving two dimensional (2D) incompressible Navier-Stokes equations. Coherent structures re- sponsible for the force variation are visualized by calculating Finite Time Lyapunov Exponents (FTLE), and vorticity contours. LCS is effective in determining the vortex boundaries, flow separation, and the wing-vortex interactions accurately. The effects of inter-wing distance and phase difference on the force generation are studied. Results show that in-phase stroking generates maximum vertical force and counter-stroking generates the least vertical force. In-phase stroking generates a wake with swirl, and counter stroking generates a wake with predominant vertical velocity. Counter stroking aids the stability of the body in hovering. As the hindwing operates in the wake of the forewing, due to the reduction in the effective Angle of Attack (AoA), the hindwing generates lesser force than that of a single flapping wing.