This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global ...This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.展开更多
In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equat...In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equation of partitions of unity for the hyperbolic tangent function is given. Then, two kinds of quasi-interpolation type neural network operators are con- structed to approximate univariate and bivariate functions, respectively. Also, the errors of the approximation are estimated by means of the modulus of continuity of function. Moreover, for approximated functions with high order derivatives, the approximation errors of the constructed operators are estimated.展开更多
Rotating Space Slender Flexible Structures(RSSFS)are extensively utilized in space operations because of their light weight,mobility,and low energy consumption.To realize the accurate space operation of the RSSFS,it i...Rotating Space Slender Flexible Structures(RSSFS)are extensively utilized in space operations because of their light weight,mobility,and low energy consumption.To realize the accurate space operation of the RSSFS,it is necessary to establish a precise mechanical model and develop a control algorithm with high precision.However,with the application of traditional control strategies,the RSSFS often suffers from the chattering phenomenon,which will aggravate structure vibration.In this paper,novel deformation description is put forward to balance modeling accuracy and computational efficiency of the RSSFS,which is better appropriate for real-time control.Besides,the Neural Network Sliding Mode Control(NNSMC)strategy modified by the hyperbolic tangent(tanh)function is put forward to compensate for modeling errors and reduce the chattering phenomenon,thereby improving the trajectory tracking accuracy of the RSSFS.Firstly,a mathematical model for the RSSFS is developed according to the novel deformation description and the vibration theory of flexible structure.Comparison of the deformation accuracy between different models proves that the novel modeling method proposed has high modeling accuracy.Next,the universal approximation property of the Radial Basis Function(RBF)neural network is put forward to determine and compensate for modeling errors,which consist of higher-order modes and the uncertainties of external disturbances.In addition,the tanh function is proposed as the reaching law in the conventional NNSMC strategy to suppress driving torque oscillation.The control law of modified NNSMC strategy and the adaptive law of weight coefficients are developed according to the Lyapunov theorem to guarantee the RSSFS stability.Finally,the simulation and physical experimental tests of the RSSFS with different control strategies are conducted.Experimental results show that the control law according to the novel deformation description and the modified NNSMC strategy can obtain accurate tracking of the rotation and reduce the vibration of the RSSFS simultaneously.展开更多
Support vector machines (SVMs) have been intensively applied in the domains of speech recognmon, text categorization, and faults detection. However, the practical application of SVMs is limited by the non-smooth fea...Support vector machines (SVMs) have been intensively applied in the domains of speech recognmon, text categorization, and faults detection. However, the practical application of SVMs is limited by the non-smooth feature of objective function. To overcome this problem, a novel smooth function based on the geometry of circle tangent is constructed. It smoothes the non-differentiable term of unconstrained SVM, and also proposes a circle tangent smooth SVM (CTSSVM). Compared with other smooth approaching functions, its smooth precision had an obvious improvement. Theoretical analysis proved the global convergence of CTSSVM. Numerical experiments and comparisons showed CTSSVM had better classification and learning efficiency than competitive baselines.展开更多
针对自适应最小均方误差(Least Mean Square,LMS)滤波算法迭代步长在算法收敛速度、稳态误差间的折中问题,设计了一种基于双曲正切函数的新型变步长算法,算法以双曲正切函数为基础,建立步长因子μ(n)与误差信号e(n)的非线性函数关系,并...针对自适应最小均方误差(Least Mean Square,LMS)滤波算法迭代步长在算法收敛速度、稳态误差间的折中问题,设计了一种基于双曲正切函数的新型变步长算法,算法以双曲正切函数为基础,建立步长因子μ(n)与误差信号e(n)的非线性函数关系,并引入参数α、β和m,设计了一种新的步长调整公式,使得在算法迭代初始阶段采用较大步长因子,达到更快的收敛速度,在接近收敛时采用较小的步长因子,获得更小的稳态误差。通过仿真分析了不同参数对算法性能的影响,与已有典型变步长算法相比,论文算法具有更快的收敛速度、更小的稳态误差和更优的追踪能力。展开更多
为实现无刷直流电机(brushless DC motor,BLDCM)无位置传感器控制,该文提出一种改进型的线反电势滑模观测器,为减少系统的抖振,该观测器引入了一种光滑的双曲正切函数,使得控制系统不必外加低通滤波器和相位补偿模块就可以获得平滑的线...为实现无刷直流电机(brushless DC motor,BLDCM)无位置传感器控制,该文提出一种改进型的线反电势滑模观测器,为减少系统的抖振,该观测器引入了一种光滑的双曲正切函数,使得控制系统不必外加低通滤波器和相位补偿模块就可以获得平滑的线反电动势估计值,进而避免了反电势估计值的相位滞后。文中将估计得到的线反电势信号对应为3个虚拟霍尔信号,直接获得6个离散的换相信号,从而无需固定相移电路和相移角的计算。仿真和实验表明,该文所提出的方法能够准确估计BLDCM的线反电动势,实现了BLDCM无位置传感器控制。展开更多
为了提高光伏/温差联合发电系统的效率,需要进行最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制。针对传统电导增量法步长固定不变导致跟踪速度慢和稳态误差大的缺点,该研究提出一种恒定电压法和双曲正切型自适应变步长算法结...为了提高光伏/温差联合发电系统的效率,需要进行最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制。针对传统电导增量法步长固定不变导致跟踪速度慢和稳态误差大的缺点,该研究提出一种恒定电压法和双曲正切型自适应变步长算法结合的MPPT控制策略。该策略利用双曲正切函数单调递增、变化速度快的特点,使步长可以根据光强等外界环境条件的变化,自适应地快速调整,同时利用恒定电压法加快追踪的响应速度。Matlab/Simulink软件仿真和硬件试验表明,该研究所提方法在光照强度剧烈变化时,系统能够在15 ms内快速跟踪到最大功率点,同时稳态误差低于0.3%,实现了MPPT控制在跟踪速度和稳态精度方面的同步优化。展开更多
基金supported by the National Natural Science Foundation of China(62073019)。
文摘This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.
基金Supported by the National Natural Science Foundation of China(61179041,61272023,and 11401388)
文摘In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equation of partitions of unity for the hyperbolic tangent function is given. Then, two kinds of quasi-interpolation type neural network operators are con- structed to approximate univariate and bivariate functions, respectively. Also, the errors of the approximation are estimated by means of the modulus of continuity of function. Moreover, for approximated functions with high order derivatives, the approximation errors of the constructed operators are estimated.
基金Supported by the Applied Basic Research Program of Liaoning Province,China(No.2023JH2/101300159)the National Natural Science Foundation of China(No.52275090).
文摘Rotating Space Slender Flexible Structures(RSSFS)are extensively utilized in space operations because of their light weight,mobility,and low energy consumption.To realize the accurate space operation of the RSSFS,it is necessary to establish a precise mechanical model and develop a control algorithm with high precision.However,with the application of traditional control strategies,the RSSFS often suffers from the chattering phenomenon,which will aggravate structure vibration.In this paper,novel deformation description is put forward to balance modeling accuracy and computational efficiency of the RSSFS,which is better appropriate for real-time control.Besides,the Neural Network Sliding Mode Control(NNSMC)strategy modified by the hyperbolic tangent(tanh)function is put forward to compensate for modeling errors and reduce the chattering phenomenon,thereby improving the trajectory tracking accuracy of the RSSFS.Firstly,a mathematical model for the RSSFS is developed according to the novel deformation description and the vibration theory of flexible structure.Comparison of the deformation accuracy between different models proves that the novel modeling method proposed has high modeling accuracy.Next,the universal approximation property of the Radial Basis Function(RBF)neural network is put forward to determine and compensate for modeling errors,which consist of higher-order modes and the uncertainties of external disturbances.In addition,the tanh function is proposed as the reaching law in the conventional NNSMC strategy to suppress driving torque oscillation.The control law of modified NNSMC strategy and the adaptive law of weight coefficients are developed according to the Lyapunov theorem to guarantee the RSSFS stability.Finally,the simulation and physical experimental tests of the RSSFS with different control strategies are conducted.Experimental results show that the control law according to the novel deformation description and the modified NNSMC strategy can obtain accurate tracking of the rotation and reduce the vibration of the RSSFS simultaneously.
文摘Support vector machines (SVMs) have been intensively applied in the domains of speech recognmon, text categorization, and faults detection. However, the practical application of SVMs is limited by the non-smooth feature of objective function. To overcome this problem, a novel smooth function based on the geometry of circle tangent is constructed. It smoothes the non-differentiable term of unconstrained SVM, and also proposes a circle tangent smooth SVM (CTSSVM). Compared with other smooth approaching functions, its smooth precision had an obvious improvement. Theoretical analysis proved the global convergence of CTSSVM. Numerical experiments and comparisons showed CTSSVM had better classification and learning efficiency than competitive baselines.
文摘针对自适应最小均方误差(Least Mean Square,LMS)滤波算法迭代步长在算法收敛速度、稳态误差间的折中问题,设计了一种基于双曲正切函数的新型变步长算法,算法以双曲正切函数为基础,建立步长因子μ(n)与误差信号e(n)的非线性函数关系,并引入参数α、β和m,设计了一种新的步长调整公式,使得在算法迭代初始阶段采用较大步长因子,达到更快的收敛速度,在接近收敛时采用较小的步长因子,获得更小的稳态误差。通过仿真分析了不同参数对算法性能的影响,与已有典型变步长算法相比,论文算法具有更快的收敛速度、更小的稳态误差和更优的追踪能力。
文摘为实现无刷直流电机(brushless DC motor,BLDCM)无位置传感器控制,该文提出一种改进型的线反电势滑模观测器,为减少系统的抖振,该观测器引入了一种光滑的双曲正切函数,使得控制系统不必外加低通滤波器和相位补偿模块就可以获得平滑的线反电动势估计值,进而避免了反电势估计值的相位滞后。文中将估计得到的线反电势信号对应为3个虚拟霍尔信号,直接获得6个离散的换相信号,从而无需固定相移电路和相移角的计算。仿真和实验表明,该文所提出的方法能够准确估计BLDCM的线反电动势,实现了BLDCM无位置传感器控制。
文摘为了提高光伏/温差联合发电系统的效率,需要进行最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制。针对传统电导增量法步长固定不变导致跟踪速度慢和稳态误差大的缺点,该研究提出一种恒定电压法和双曲正切型自适应变步长算法结合的MPPT控制策略。该策略利用双曲正切函数单调递增、变化速度快的特点,使步长可以根据光强等外界环境条件的变化,自适应地快速调整,同时利用恒定电压法加快追踪的响应速度。Matlab/Simulink软件仿真和硬件试验表明,该研究所提方法在光照强度剧烈变化时,系统能够在15 ms内快速跟踪到最大功率点,同时稳态误差低于0.3%,实现了MPPT控制在跟踪速度和稳态精度方面的同步优化。