A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order...A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order effects of element deformations, replaces the conventional incremental secant stiffness matrix. Two deformation stiffness matrices due to the variation of axial force and bending moments are included in the tangent stiffness. They are functions of element deformations and incorporate the coupling among axial, lateral and torsional deformations. A correction matrix is added to the tangent stiffness matrix to make displacement derivatives equivalent to the commutative rotational degrees of freedom. Numerical examples show that the proposed dement is accurate and efficient in predicting the nonlinear behavior, such as axial-torsional and flexural-torsional buckling, of space frames even when fewer elements are used to model a member.展开更多
The standard formula for geometric stiffness matrix calculation, which is convenient for most engineering applications, is seen to be unsatisfactory for large strains because of poor accuracy, low convergence rate, an...The standard formula for geometric stiffness matrix calculation, which is convenient for most engineering applications, is seen to be unsatisfactory for large strains because of poor accuracy, low convergence rate, and stability. For very large compressions, the tangent stiffness in the direction of the compression can even become negative, which can be regarded as physical nonsense. So in many cases rubber materials exposed to great compression cannot be analyzed, or the analysis could lead to very poor convergence. Problems with the standard geometric stiffness matrix can even occur with a small strain in the case of plastic yielding, which eventuates even greater practical problems. The authors demonstrate that amore precisional approach would not lead to such strange and theoretically unjustified results. An improved formula that would eliminate the disadvantages mentioned above and leads to higher convergence rate and more robust computations is suggested in this paper. The new formula can be derived from the principle of virtual work using a modified Green-Lagrange strain tensor, or from equilibrium conditions where in the choice of a specific strain measure is not needed for the geometric stiffness derivation (which can also be used for derivation of geometric stiffness of a rigid truss member). The new formula has been verified in practice with many calculations and implemented in the RFEM and SCIA Engineer programs. The advantages of the new formula in comparison with the standard formula are shown using several examples.展开更多
Based on analytical equations, a cat ena ry element is presented for the finite element analysis of cable structures. Com pared with usually used element(3_node element, 5_node element), a program with the proposed e...Based on analytical equations, a cat ena ry element is presented for the finite element analysis of cable structures. Com pared with usually used element(3_node element, 5_node element), a program with the proposed element is of less computer time and better accuracy.展开更多
文摘A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order effects of element deformations, replaces the conventional incremental secant stiffness matrix. Two deformation stiffness matrices due to the variation of axial force and bending moments are included in the tangent stiffness. They are functions of element deformations and incorporate the coupling among axial, lateral and torsional deformations. A correction matrix is added to the tangent stiffness matrix to make displacement derivatives equivalent to the commutative rotational degrees of freedom. Numerical examples show that the proposed dement is accurate and efficient in predicting the nonlinear behavior, such as axial-torsional and flexural-torsional buckling, of space frames even when fewer elements are used to model a member.
文摘The standard formula for geometric stiffness matrix calculation, which is convenient for most engineering applications, is seen to be unsatisfactory for large strains because of poor accuracy, low convergence rate, and stability. For very large compressions, the tangent stiffness in the direction of the compression can even become negative, which can be regarded as physical nonsense. So in many cases rubber materials exposed to great compression cannot be analyzed, or the analysis could lead to very poor convergence. Problems with the standard geometric stiffness matrix can even occur with a small strain in the case of plastic yielding, which eventuates even greater practical problems. The authors demonstrate that amore precisional approach would not lead to such strange and theoretically unjustified results. An improved formula that would eliminate the disadvantages mentioned above and leads to higher convergence rate and more robust computations is suggested in this paper. The new formula can be derived from the principle of virtual work using a modified Green-Lagrange strain tensor, or from equilibrium conditions where in the choice of a specific strain measure is not needed for the geometric stiffness derivation (which can also be used for derivation of geometric stiffness of a rigid truss member). The new formula has been verified in practice with many calculations and implemented in the RFEM and SCIA Engineer programs. The advantages of the new formula in comparison with the standard formula are shown using several examples.
文摘Based on analytical equations, a cat ena ry element is presented for the finite element analysis of cable structures. Com pared with usually used element(3_node element, 5_node element), a program with the proposed element is of less computer time and better accuracy.