期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The tangential k-Cauchy-Fueter type operator and Penrose type integral formula on the generalized complex Heisenberg group
1
作者 REN Guang-zhen SHI Yun KANG Qian-qian 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期181-190,共10页
The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.I... The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.In this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex Heisenberg.We investigate quaternionic analysis on the generalized complex Heisenberg.We also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex. 展开更多
关键词 the generalized complex Heisenberg group the tangential k-cauchy-fueter type operator Penrose-type integral formula
下载PDF
多四元变量的k-Cauchy-Fueter算子 被引量:1
2
作者 王伟 《中国科学:数学》 CSCD 北大核心 2015年第11期1791-1810,共20页
本文综述了多四元变量的k-Cauchy-Fueter算子的研究进展,讨论了k-Cauchy-Fueter复形、非齐次k-Cauchy-Fueter方程、Hartogs扩张现象、Bochner-Martinelli积分表示公式、Penrose积分变换和k正则函数的级数展开、四元Hardy空间与Cauchy-Sz... 本文综述了多四元变量的k-Cauchy-Fueter算子的研究进展,讨论了k-Cauchy-Fueter复形、非齐次k-Cauchy-Fueter方程、Hartogs扩张现象、Bochner-Martinelli积分表示公式、Penrose积分变换和k正则函数的级数展开、四元Hardy空间与Cauchy-Szeg¨o核、0-Cauchy-Fueter算子及与四元Monge-Amp`ere算子的关系、四元闭正流及其Lelong数、Lelong-Jessen型公式,以及切向k-CauchyFueter算子与复形. 展开更多
关键词 k-cauchy-fueter算子与复形 K正则函数 四元多重位势论 切向k-cauchy-fueter算子与复形
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部