To explore the protective effect of sodium tanshinone ⅡA sulfonate(STS) on microcirculatory disturbance of small intestine in rats with sepsis,and the possible mechanism,a rat model of sepsis was induced by cecal l...To explore the protective effect of sodium tanshinone ⅡA sulfonate(STS) on microcirculatory disturbance of small intestine in rats with sepsis,and the possible mechanism,a rat model of sepsis was induced by cecal ligation and puncture(CLP).Rats were randomly divided into 3 groups:sham operated group(S),sepsis group(CLP) and STS treatment group(STS).STS(1 mg/kg) was slowly injected through the right external jugular vein after CLP.The histopathologic changes in the intestinal tissue and changes of mesenteric microcirculation were observed.The levels of tumor necrosis factor-α(TNF-α) in the intestinal tissue were determined by using enzyme-linked immunoabsorbent assay(ELISA).The expression of intercellular adhesion molecule-1(ICAM-1) in the intestinal tissue was detected by using immunohistochemisty and Western blot,that of nuclear factor κB(NF-κB) and tissue factor(TF) by using Western blot,and the levels of NF-κB mRNA expression by using RT-PCR respectively.The microcirculatory disturbance of the intestine was aggravated after CLP.The injury of the intestinal tissues was obviously aggravated in CLP group as compared with S group.The expression levels of NF-κB p65,ICAM-1,TF and TNF-α were upregulaed after CLP(P0.01).STS post-treatment could ameliorate the microcirculatory disturbance,attenuate the injury of the intestinal tissues induced by CLP,and decrease the levels of NF-κB,ICAM-1,TF and TNF-α(P0.01).It is suggested that STS can ameliorate the microcirculatory disturbance of the small intestine in rats with sepsis,and the mechanism may be associated with the inhibition of inflammatory responses and amelioration of coagulation abnormality.展开更多
The changes of proto-oncogene c-fos and c-jun mRNA expression in angiotensin Ⅱ (AngⅡ)-induced hypertrophy and effects of sodium tanshinone ⅡA sulfonate (STS) in the primary culture of neonatal rat cardiomyocyte...The changes of proto-oncogene c-fos and c-jun mRNA expression in angiotensin Ⅱ (AngⅡ)-induced hypertrophy and effects of sodium tanshinone ⅡA sulfonate (STS) in the primary culture of neonatal rat cardiomyocytes were investigated. Twelve neonatal clean grade Wistar rats were selected. The cardiomyocytes were isolated, cultured and divided according to different treatments in the medium. The cardiomyocyte size was determined by phase contrast microscope, and the rate of protein synthesis was measured by [3H]-Leucine incorporation. The c-fos and c-jun mRNA expression in cardiomyocytes was detected by reverse transcription polymerase chain reaction (RT-PCR). It was found after cardiomyocytes were treated with AngⅡ for 30 min, the c-fos and c-jun mRNA expression in cardiomyocytes was increased significantly (P〈0.01). After treatment with AngⅡ for 24 h, the rate of protein synthesis in AngⅡ group was significantly increased as compared with control group (P〈0.01). After treatment with AngⅡ for 7 days, the size of cardiomyocytes in AngⅡ group was increased obviously as compared with control group (P〈0.05). After pretreatment with STS or Valsartan before AngⅡ treatment, both of them could inhibit the above effects of AngⅡ (P〈0.05 or P〈0.01). It was suggested that STS could ameliorate AngⅡ-induced cardiomyocyte hy- pertrophy by inhibiting c-fos and c-jun mRNA expression and reducing protein synthesis rate of cardiomyocytes.展开更多
A sustainable and practical process is presented for the direct synthesis of sodium tanshinone IIA sulfonate(STS).Our approach was inspired by the well-established and industrially applied batch synthetic route for ST...A sustainable and practical process is presented for the direct synthesis of sodium tanshinone IIA sulfonate(STS).Our approach was inspired by the well-established and industrially applied batch synthetic route for STS production.We constructed a telescoped two-step continuous flow platform.This involved a continuous tanshinone IIA sulfonation and in-line salt formation.For the setup,we constructed a 3D circular cyclone-type microreactor using femtosecond laser micromachining.Compared to the 68%yield for 2 h in batch,the two-step continuous flow had an STS yield of 90%,achieved for a total residence time of<3.0 min under optimal conditions.The proposed continuous flow method vastly simplified the operation and improved procedural safety,while significantly reducing the required acid content and wastewater production.展开更多
Myocardial damage resulting from acute myocardial infarction often leads to progressive heart failure and sudden death,highlighting the urgent clinical need for effective therapies.Recently,tanshinoneⅡA has been iden...Myocardial damage resulting from acute myocardial infarction often leads to progressive heart failure and sudden death,highlighting the urgent clinical need for effective therapies.Recently,tanshinoneⅡA has been identified as a promising therapeutic agent for myocardial infarction.However,efficient delivery remains a major issue that limits clinical translation.To address this problem,an injectable thermosensitive poly(lactic acid-co-glycolic acid)-block-poly(ethylene glycol)-block-poly(lactic acid-co-glycolic acid)gel(PLGA-PEG-PLGA)system encapsulating tanshinoneⅡA-loaded reactive oxygen species-sensitive microspheres(Gel-MS/tanshinoneⅡA)has been designed and synthesized in this study.The thermosensitive hydrogel exhibits good mechanical properties after reaching body temperature.Microspheres initially immobilized by the gel exhibit excellent reactive oxygen species-triggered release properties in a high-reactive oxygen species environment after myocardial infarction onset.As a result,encapsulated tanshinoneⅡA is effectively released into the infarcted myocardium,where it exerts local anti-pyroptotic and anti-inflammatory effects.Importantly,the combined advantages of this technique contribute to the mitigation of left ventricular remodeling and the restoration of cardiac function following tanshinoneⅡA.Therefore,this novel,precision-guided intra-tissue therapeutic system allows for customized local release of tanshinoneⅡA,presenting a promising alternative treatment strategy aimed at inducing beneficial ventricular remodeling in the post-infarct heart.展开更多
BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has sho...BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.展开更多
Objective: To observe the effects of sodium tanshinone ⅡA sulfonate (STS) on angiotensin Ⅱ (Ang Ⅱ)-induced hypertrophy of myocardial cells through the expression of phosphorylated extracellular signal-regulate...Objective: To observe the effects of sodium tanshinone ⅡA sulfonate (STS) on angiotensin Ⅱ (Ang Ⅱ)-induced hypertrophy of myocardial cells through the expression of phosphorylated extracellular signal-regulated kinase (p-ERK1/2). Methods: In the primary culture of neonatal rat myocardial cells, the total protein content in myocardial cells was determined by coomassie brilliant blue and the protein synthesis rate was measured by [3H]-Leucine incorporation as indexes for hypertrophy of myocardial cells. The expression of p-ERK1/2 was determined using Western blot and immunofluorescence labeling. Results: (1) The total protein and protein synthesis rate increased significantly in contrast to the control group after the myocardial cells were stimulated by Ang Ⅱ (1 μ mol/L) for 24 h; STS markedly inhibited the increment of the total protein level induced by Ang Ⅱ and the syntheses of protein. (2) After pretreatment of myocardial cells with Ang Ⅱ (1 μmol/L) for 5 min, the p-ERK1/2 protein expression was increased, with the most obvious effect shown at about 10 min; pretreatment of myocardial cells with STS at different doses (2, 10, 50μmol/L) for 30 min resulted in obvious inhibition of the expression of p-ERK1/2 stimulated by Ang Ⅱ in a dose-dependent manner. (3) After the myocardial cells were stimulated by AngⅡ (1 μ mol/L), the immunofluorescence of ERK1/2 rapidly appeared in the nucleus. The activation and translocation process of ERK1/2 induced by Ang Ⅱ was blocked distinctly by STS. (Conclusion: STS inhibited the myocardial cell hypertrophy induced by Ang Ⅱ, and the mechanism may be associated with the inhibition of p-ERK1/2 expression.展开更多
Objective: To investigate the effects of sodium tanshinone Ⅱ A sulfonate (STS) on the hypertrophy induced by angiotensin Ⅱ(Ang Ⅱ) in primary cultured neonatal rat cardiac myocytes. Methods: The effect of STS ...Objective: To investigate the effects of sodium tanshinone Ⅱ A sulfonate (STS) on the hypertrophy induced by angiotensin Ⅱ(Ang Ⅱ) in primary cultured neonatal rat cardiac myocytes. Methods: The effect of STS on cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-3,5- phenytetrazoliumromide (MTT) assay. As indexes for cardiocyte hypertrophy, cell size was determined by phase contrast microscopy and protein synthesis rate was measured by 3H-leucine incorporation. The proto-oncogene c-fos mRNA expression of cardiocytes was assessed using reverse transcription polymerase chain reaction (RT-PCR). Results: STS could inhibit cardiocyte hypertrophy, increase the protein synthesis rate and enhance proto-oncogene c-fos mRNA expression in cardiocytes induced by Ang Ⅱ(P〈0.01), with an effect similar to that of Valsartan, the Ang Ⅱ receptor antagonist. Conclusion: STS can prevent the hypertrophy of cardiac myocytes induced by Ang Ⅱ, which may be related to its inhibition of the expression of proto-oncogene c-fos mRNA.展开更多
Objective: To explore the protective effect of sodium tanshinone ⅡA sulfonate (STS) on small intestine injury in rats with sepsis and its possible mechanism. Methods: According to a random number table, 24 Tats w...Objective: To explore the protective effect of sodium tanshinone ⅡA sulfonate (STS) on small intestine injury in rats with sepsis and its possible mechanism. Methods: According to a random number table, 24 Tats were randomly divided into 3 groups: sham operation group (sham group), sepsis model group (model group) and STS treatment group (STS group), with 8 Tats in each group. A rat model of sepsis was induced by cecal ligation and puncture (CLP) for 5 h. STS (1 mg/kg) was slowly injected through the right external jugular vein after CLP. The histopathologic changes in the intestine tissue were observed under a light microscope, and the intestinal epithelial cell apoptosis was evaluated by terminal deoxynucleoddyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) method. The expressions of Bcl-2, Bax and nuclear factor κB (NF- κ B) p65 in the intestinal tissue was determined by Western blot. The levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) in the intestinal tissue were determined using enzyme-linked immuno-sorbent assay (ELISA). Results: Obvious injuries were observed in the intestinal tissue in the CLP group compared with the sham group. The expression of NF- K B p65 and the levels of TNF- α and IL-6 were up-regulated after CLP, the apoptosis of intestinal epithelial cells was increased after CLP, and the ratio of Bcl-2 to Bax was decreased. STS post- treatment could attenuate the injury on the intestinal tissue induced by CLP, decrease the apoptosis of intestinal epithelial cells and the levels of NF- κ B p65, TNF-α and IL-6, and increase the ratio of Bcl-2 to Bax. Conclusion: STS can protect the small intestine in rats with sepsis, and the mechanism may be associated with the inhibition of intestinal epithelial apoptosis and the reduction of activation of inflammatory cytokines.展开更多
This study investigated the effects of X-ray irradiation on primary rat cardiac fibroblasts(CFs) and its potential mechanism, as well as whether sodium tanshinone ⅡA sulfonate(STS) has protective effect on CFs and it...This study investigated the effects of X-ray irradiation on primary rat cardiac fibroblasts(CFs) and its potential mechanism, as well as whether sodium tanshinone ⅡA sulfonate(STS) has protective effect on CFs and its possible mechanism. Our data demonstrated that X-rays inhibited cell growth and increased oxidative stress in CFs, and STS mitigated X-ray-induced injury. Enzyme-linked immuno-sorbent assay showed that X-rays increased the levels of secreted angiotensin Ⅱ(Ang Ⅱ) and brain natriuretic peptide(BNP). STS inhibited the X-ray-induced increases in Ang Ⅱ and BNP release. Apoptosis and cell cycle of CFs were analyzed using flow cytometry. X-rays induced apoptosis in CFs, whereas STS inhibited apoptosis in CFs after X-ray irradiation. X-rays induced S-phase cell cycle arrest in CFs, which could be reversed by STS. X-rays increased the expression of phosphorylated-P38/P38,cleaved caspase-3 and caspase-3 as well as decreased the expression of phosphorylated extracellular signal-regulated kinase 1/2(ERK1/2)/ERK 1/2 and B cell lymphoma 2(Bcl-2)/Bcl-2 associated X protein(BAX) in CFs, as shown by Western blotting. STS mitigated the X-ray radiation-induced expression changes of these proteins. In conclusion, our results demonstrated that STS may potentially be developed as a medical countermeasure to mitigate radiation-induced cardiac damage.展开更多
Objective:To assess whether an adjunctive therapy of Sodium Tanshinone ⅡA Sulfonate Injection(STS)is effective and safe in improving clinical outcomes in patients with coronary heart disease(CHD).Methods:A literature...Objective:To assess whether an adjunctive therapy of Sodium Tanshinone ⅡA Sulfonate Injection(STS)is effective and safe in improving clinical outcomes in patients with coronary heart disease(CHD).Methods:A literature search was conducted through PubMed,the Cochrane Library,Knowledge Infrastructure Databases(CNKI),Chinese Biomedical Literature Database(SinoMed),Chinese Science and Technology Periodical Database(VIP)and Wanfang Database up to August 2017.Randomized controlled trials(RCTs)comparing STS with placebo or no additional treatments on the basis of standard conventional medicine therapies were included.The outcomes were all-cause mortality,major acute cardiovascular events(MACEs),cardiac function and inflammatory factors.The risk of bias assessment according to the Cochrane Handbook was used to evaluate the methodological quality of the included trials.Revman 5.3 software was used for data analyses.Results:A total of 22 RCTs involving 1,873 participants were included.All of the trials used STS as adjunctive treatment to standard conventional medicine therapy.Due to the poor quality of methodologies of most trials,only limited evidence showed that a combination of STS with percutaneous coronary intervention(PCI)or thrombolytic therapy(TT)might be more effective on reduction of all cause death rate than TT alone[risk ratio(RR)0.25,95% confidence interval(CI)0.07 to 0.87]or PCI alone(RR 0.42,95%CI 0.04 to 4.36).The results of 6 trials comparing STS plus TT with TT alone showed that the addition of STS significantly reduced the incidence of cardiac shock(RR 0.35,95%CI 0.14 to 0.86),heart failure(RR 0.41,95% CI 0.20 to 0.83)and arrhythmia(RR 0.21,95%CI 0.12 to 0.46).STS combined with TT also showed a superior effect on cardiac function and inflammatory factor.No severe adverse event was reported related to STS.Conclusions:As an adjunctive therapy,STS combined with standard conventional medicine seems to be more effective on all-cause mortality or MACEs than conventional medicine treatment alone with less side effects.However,we cannot make a firm conclusion due to low quality of inclusion trials.Well-designed trials with high methodological quality are needed to validate the effect of STS for CHD patients.展开更多
In order to .study the effect of tanshinone ⅡA on growth and apoptosis in human hepatoma cell line BEL-7402 in vitro, the human hepatoma cell line BEL-7402 was treated with tanshinone ⅡA at various concentrations fo...In order to .study the effect of tanshinone ⅡA on growth and apoptosis in human hepatoma cell line BEL-7402 in vitro, the human hepatoma cell line BEL-7402 was treated with tanshinone ⅡA at various concentrations for 72 h. Growth suppression was evaluated by MTT assay; apoptosis-relat-ed alterations in morphology and biochemistry were ascertained under cytochemical staining (Hoechst 33258), transmission electron microscopy (TEM), and DNA agarose gel electrophoresis. Apoptotic rate was quantified by flow cytometry (FCM). The results showed that Tanshinone ⅡA could inhibit the growth of hepatoma cells in a dose-dependent manner, with IC50 value being 6. 28μg/ml. After treatment with 1-10μg/ml tanshinone ⅡA for 72 h, BEL-7402 cells apoptosis with nuclear chro-matin condensation and fragmentation as well as cell shrinkage and the formation of apoptotic bodies were observed. DNA ladder could be demonstrated on DNA electrophoresis. FCM analysis showed hypodiploid peaks on histogram, and the apoptotic rates at μg/ml concentration for 12 h> 24 h, 36 h, 48 h and 72 h were (2. 32±0. 16)%, (3. 01±0. 35) %, (3. 87±0. 43)%, (6. 73±0. 58)% and (20. 85 ± 1. 74) % respectively, which were all significantly higher than those in the control group (1. 07±0. 13) %. It is concluded that Tanshinone ⅡA could induce human hepatoma cell line BEL-7402 apoptosis, which may be related to the mechanism of growth inhibition.展开更多
To explore the effects of Tanshinone Ⅱ A on the proliferation, apoptosis and gene expression of p53 and bcl-2 in human gastric carcinoma MKN-45 cells. Cell count and MTT assay were used to study the proliferation-inh...To explore the effects of Tanshinone Ⅱ A on the proliferation, apoptosis and gene expression of p53 and bcl-2 in human gastric carcinoma MKN-45 cells. Cell count and MTT assay were used to study the proliferation-inhibiting effect of Tanshinone Ⅱ A on MKN-45 cells. The effect of Tanshinone Ⅱ A on the cell cycle and apoptosis of MKN-45 cells were examined by propidium iodide (PI) staining and flow cytometry. Semi-quantitative RT-PCR was used to further verify the ex- pression of p53 and bcl-2 gene after exposure to Tanshinone Ⅱ A in MKN-45 cells. The results showed that Tanshinone Ⅱ A significantly inhibited the growth and proliferation of MKN-45 cells in a dose- and time-dependent manner (P〈0.05). Tanshinone Ⅱ A arrested MKN-45 cells in G2/M phase which led to an obvious accumulation of G2/M phase cells while decreased number of Go/G1 phase cells. This resulted in apoptosis of MKN-45 cells and the apoptosis rate was as high as 43.91% after treatment with 2.0 lag/mL Tanshinone Ⅱ A for 96 h. It was also found that Tanshinone Ⅱ A up-regulated expression of p53 gene and down-regulated expression of bcl-2 gene. The cytostatic and antiproliferative effect of Tanshinone Ⅱ A makes it a promising anticancer agent for the treatment of gastric carcinoma.展开更多
To investigate the molecular mechanism by which Tanshinone Ⅱ A (TSN Ⅱ A) prevents left ventricular hypertrophy (LVH), we examined the expression of AT1R, TGF-β1 and Smads gene in the hypertrophic myocardium of ...To investigate the molecular mechanism by which Tanshinone Ⅱ A (TSN Ⅱ A) prevents left ventricular hypertrophy (LVH), we examined the expression of AT1R, TGF-β1 and Smads gene in the hypertrophic myocardium of hypertensive rats with abdominal aorta constriction. LVH model was established by creating abdominal aorta constriction. Four weeks later, animals were randomly divided into 4 groups with 8 animals in each. One group was used as model control, the other three groups were treated with TSN ⅡA (20 mg/kg), TSN ⅡA (10 mg/kg) and valsartan (10 mg/kg), respectively. Another 8 SD rats were subjected to sham surgery and served as blank control. After 8- week treatment, the caudal artery pressure of the animals was measured. The tissues of left ventricle were taken for the measurement of the left ventricular mass index (LVMI) and pathological sectioning and HE-staining were used for determining the myocardial fiber dimension (MFD). The mRNA expression of AT1R, protein expression of TGF-betal and activity of Smad-2, 4, 7 were detected by RT-PCR and Western blotting, respectively. Our results showed that (1) the blood pressure of rats treated with TSN Ⅱ A, either at high or low dose, was significantly higher than those in the control and valsartan-treated group (P〈0.01, P〈0.05); (2) LVMI and MFD in TSN Ⅱ A and valsartan-treated rats were higher than those in the control group (P〈0.05) but significantly lower than those in the model control (P〈0.01); (3) the high doses of TSN Ⅱ A and valsartan significantly down-regulated the mRNA expression of AT 1R and protein expression of TGF-beta l and Smad-3 in the hypertrophic myocardium (P〈0.01), and TGF-betal in valsartan-treated animals was more significantly lower than that in rats treated with TSN Ⅱ A; (4) the two doses of TSN Ⅱ A and valsartan significantly up-regulated the protein expression of Smad-7 in the hypertrophic myocardium (P〈0.01), and Smad-7 in the animals treated with high-dose TSN Ⅱ A was significantly higher than that in rats treated with valsartan. It is concluded that inhibition of myocardial hypertrophy induced by TSN ⅡA independent of blood pressure. The underlying mechanism might be the down-regulated expression of AT1R mRNA and Smad-3, increased production of Smad-7, and blocking effect of TSN Ⅱ A on TGF betal/Smads signal pathway in local myocardium.展开更多
Two series of tanshinone ⅡA derivatives were synthesized and evaluated for their antitumor activities as Cdc25 phosphatase inhibitors. Most of them demonstrated potent Cdc25 inhibitory activity and powerful cytotoxic...Two series of tanshinone ⅡA derivatives were synthesized and evaluated for their antitumor activities as Cdc25 phosphatase inhibitors. Most of them demonstrated potent Cdc25 inhibitory activity and powerful cytotoxicity against A549 tumor cell line, producing IC50 values in very low micromolar range. At last, the preliminary SAR was discussed.展开更多
Total tanshinones are lipophilic active constituents extracted from Salvia miltiorrhiza Bge.Tanshinone ⅡA and cryptotanshinone are the major components in total tanshinones.However, the bioavailability of both compou...Total tanshinones are lipophilic active constituents extracted from Salvia miltiorrhiza Bge.Tanshinone ⅡA and cryptotanshinone are the major components in total tanshinones.However, the bioavailability of both compounds is low due to poor water solubility. To enhance the solubility and dissolution rate of tanshinone ⅡA, cryptotanshinone and total tanshinones,three common used hydrophilic carriers including PEG 6000, poloxamer 188 and PVP K30 were used to prepare the solid dispersions at different ratios, respectively. The solid dispersions were characterised by scanning electron microscopy(SEM), differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR). The results of powder X-ray diffraction confirmed the microcrystal state of total tanshinones in solid dispersions and no chemical interaction between total tanshinones and carriers was observed in FTIR spectra. The solubility and dissolution rate of tanshinone ⅡA and cryptotanshinone were significantly increased in all solid dispersions. Regarding tanshinone ⅡA, the solubility and dissolution rate of in solid dispersions prepared with poloxamer 188 were significantly higher than that with PEG 6000 and PVP K30. The higher solubility and dissolution rate of cryptotanshinone were obtained in solid dispersion of PVP K30 than that of PEG 6000 solid dispersions but no significant difference from poloxamer 188 solid dispersions. The results indicate that the superior carrier for preparation of tanshinone ⅡA and total tanshinones solid dispersions is poloxamer 188, and that for cryptotanshinone is PVP K30.展开更多
The effects of tanshinone ⅡA (TSN) on transforming growth factor β1 (TGFβ1) signal transduction in renal interstitial fibroblasts of rats were studied in order to investigate its mechanism in prevention of rena...The effects of tanshinone ⅡA (TSN) on transforming growth factor β1 (TGFβ1) signal transduction in renal interstitial fibroblasts of rats were studied in order to investigate its mechanism in prevention of renal interstitial fibrosis. Rat renal fibroblasts of the line NRK/49F were cultured in vitro, stimulated with 5 ng/mL TGFβ1 and pretreated with 10-6, 10-5, 10-4 mol/L TSN respectively. The mRNA levels of fibronectin (FN) were examined by RT-PCR. The protein expression of FN and Smads was detected by Western blot. TGFβ1 induced the expression of FN mRNA and Smads in a time-dependent manner in a certain range. Compared with pre-stimulation, the FN mRNA and protein levels were increased by 1.1 times and 1.5 times respectively (P〈0.01, P〈0.01), and the protein expression of phosphorylated Smad2/3 (p-Smad2/3) increased by 7 times at the end of TGFβ1 stimulation (P〈0.01). TSN pretreatment may down-regulate the FN and p-Smad2/3 expression in a dose-dependent manner. 10-6 mol/L TSN pretreatment had no effect on the FN and p-Smad2/3 expression (both P〉0.05). After pretreatment with 10-5 and 10-4 mol/L TSN, the FN mRNA levels were decreased by 28.1% and 43.8% respectively (P〈0.05, P〈0.01), the FN protein levels were decreased by 40% and 44% respectively (P〈0.05, P〈0.05), and the p-Smad2/3 protein expression were decreased by 40% and 65% respectively (P〈0.05, P〈0.01). The inhibitory effect of TSN on renal interstitial fibrosis may be related to its blocking effect on TGFβ1-Smads signal pathway in renal intersti- tial fibroblasts.展开更多
This study examined the effect of tanshinoneⅡA (TSNⅡA) on the cardiac fibrosis induced by transforming growth factor β1 (TGF-β1) and the possible mechanisms. Cardiac fibroblasts were isolated from cardiac tissues ...This study examined the effect of tanshinoneⅡA (TSNⅡA) on the cardiac fibrosis induced by transforming growth factor β1 (TGF-β1) and the possible mechanisms. Cardiac fibroblasts were isolated from cardiac tissues of neonatal Sprague-Dawley (SD) rats by the trypsin digestion and differential adhesion method. The cells were treated with 5 ng/mL TGF-β1 alone or pretreated with TSNⅡA at different concentrations (10–5 mol/L, 10–4 mol/L). Immunocytochemistry was used for cell identification, RT-PCR for detection of the mRNA expression of connective tissue growth factor (CTGF) and collagen type Ⅰ (COLⅠ), Western blotting for detection of the protein expression of Smad7 and Smad3, and immunohistochemistry and immunofluorescence staining for detection of the protein expression of phosphorylated Smad3 (p-Smad3), CTGF and COLⅠ. The results showed that TGF-β1 induced the expression of CTGF, COLⅠ, p-Smad3 and Smad7 in a time-dependent manner. The mRNA expression of CTGF and COLⅠ was significantly increased 24 h after TGF-β1 stimulation (P<0.01 for all). The protein expression of p-Smad3 and Smad7 reached a peak 1 h after TGF-β1 stimulation, much higher than the baseline level (P<0.01 for all). Pretreatment with high concentration of TSNⅡA resulted in a decrease in the expression of p-Smad3, CTGF and COLⅠ (P<0.01). The protein expression of Smad7 was substantially upregulated after pretreatment with two concentrations of TSNⅡA as compared with that at 2h post TGF-β1 stimulation (P<0.05 for low concentration of TSNⅡA; P<0.01 for high concentration of TSNⅡA). It was concluded that TSNⅡA may exert an inhibitory effect on cardiac fibrosis by upregulating the expression of Smad7, suppressing the TGF-β1-induced phosphorylation of Smad3 and partially blocking the TGF-β1-Smads signaling pathway.展开更多
Danshen, the rhizome of Salvia miltiorrhiza Bunge, has been used in traditional Chinese medicine (TCM) for treatment of various diseases. Tanshinone IIA (TSA) is one of the main active components of Danshen, w...Danshen, the rhizome of Salvia miltiorrhiza Bunge, has been used in traditional Chinese medicine (TCM) for treatment of various diseases. Tanshinone IIA (TSA) is one of the main active components of Danshen, which has multiple bioactivities. This article reviews the research progress of TSA in the treatment of cardiovascular disease, anti-inflammatory and immune, anti-tumor, liver protection, neuroprotection. It provides more ideas for the clinical application of TSA and the development of drug resistance.展开更多
The calcium binding of erythrocyte membrane was determined in spontaneous hypertensiverats (SHR)and renovascular hypertensive rats (RVHR two-kidney, one-clip model) and the effect ofsodium tanshinone Ⅱ-A sulfonate(DS...The calcium binding of erythrocyte membrane was determined in spontaneous hypertensiverats (SHR)and renovascular hypertensive rats (RVHR two-kidney, one-clip model) and the effect ofsodium tanshinone Ⅱ-A sulfonate(DS-201)on the calcium binding in SHRs was investigated. Ourresults show that the basal calcium binding was reduced in SHRs (P<0.01 vs WKY),while the maximalcalcium binding was not,but both typies calcium bindings had no significant change in RVHRs.Sodiumtanshinone Ⅱ-A sulfonate (125μ mol/L)have no effect on the calcium binding of ecythrocyte membraneof SHR in vitro.These data further support the hypothesis that there is a cell membrane abnormalitypresent in SHRs which may possibly serve as a marker genetics of in hypertension.展开更多
Danshen has been used in stroke treatment for thousands of years in China. However, the underlying mechanism still remains elusive. Neuron loss is the cardinal feature of stroke. Stimulating endogenous neurogene- sis,...Danshen has been used in stroke treatment for thousands of years in China. However, the underlying mechanism still remains elusive. Neuron loss is the cardinal feature of stroke. Stimulating endogenous neurogene- sis, especially neuronal differentiation, might potentially provide therapeutic effects to these diseases. To interpret Danshen' s disease-modifying effects, the effects of tanshinone 11 A (T 11 A), the major lipophilic component of Danshen, on neuronal differentiation in rat PC12 pheochromocytoma cells and the rat embryonic cortical neural stem cells (NSCs) were observed. PC12 cells and NSCs were incubated with T II A for 7 days. To detect the neu- ronal differentiation, GAP-43 expression was detected by western blots assay and β-tubulin HI expression was de- tected by immunocytochemical staining. Results showed that T Ⅱ A dose-dependently promoted neuronal differentia- tion. T Ⅱ A activated mitogen-activated protein kinase 42/44 (MAPK42/44) and its downstream transcription fac- tor, cAMP response element-binding protein (CREB). In addition , T Ⅱ A up-regulated the expressions of brain de- rived neurotrophic factor (BDNF) and nerve growth factor (NGF). The MEK inhibitor and the antagonist to the re- ceptors of NGF and BDNF could partially attenuate the differentiation effects, indicating that MAPK42/44 mediated BDNF and NGF signals were involved in T Ⅱ A' s differentiation effects. Caveolin-1 ( CAV-1 ), the major functional protein of membrane caveolae, plays critical roles in the endocytosis of exogenous materials. CAV1, which was ac-tivated by T Ⅱ A, might help T Ⅱ A transport across cell membrane to initiate its differentiation effects. It was prov- en by the evidences that suppressing the function of caveolin inhibited the differentiation effects of T Ⅱ A. There- fore, it was concluded that T Ⅱ A promoted neuronal differentiation partially through MAPK42/44 mediated B DNF and NEF signals in a caveolae-dependent manner.展开更多
基金supported by a grant from Natural Sciences Foundation of Hubei Province,China (No. 2009CDB371)
文摘To explore the protective effect of sodium tanshinone ⅡA sulfonate(STS) on microcirculatory disturbance of small intestine in rats with sepsis,and the possible mechanism,a rat model of sepsis was induced by cecal ligation and puncture(CLP).Rats were randomly divided into 3 groups:sham operated group(S),sepsis group(CLP) and STS treatment group(STS).STS(1 mg/kg) was slowly injected through the right external jugular vein after CLP.The histopathologic changes in the intestinal tissue and changes of mesenteric microcirculation were observed.The levels of tumor necrosis factor-α(TNF-α) in the intestinal tissue were determined by using enzyme-linked immunoabsorbent assay(ELISA).The expression of intercellular adhesion molecule-1(ICAM-1) in the intestinal tissue was detected by using immunohistochemisty and Western blot,that of nuclear factor κB(NF-κB) and tissue factor(TF) by using Western blot,and the levels of NF-κB mRNA expression by using RT-PCR respectively.The microcirculatory disturbance of the intestine was aggravated after CLP.The injury of the intestinal tissues was obviously aggravated in CLP group as compared with S group.The expression levels of NF-κB p65,ICAM-1,TF and TNF-α were upregulaed after CLP(P0.01).STS post-treatment could ameliorate the microcirculatory disturbance,attenuate the injury of the intestinal tissues induced by CLP,and decrease the levels of NF-κB,ICAM-1,TF and TNF-α(P0.01).It is suggested that STS can ameliorate the microcirculatory disturbance of the small intestine in rats with sepsis,and the mechanism may be associated with the inhibition of inflammatory responses and amelioration of coagulation abnormality.
基金a grant from National Natural Sciences Foundation of China (No. 30500657)
文摘The changes of proto-oncogene c-fos and c-jun mRNA expression in angiotensin Ⅱ (AngⅡ)-induced hypertrophy and effects of sodium tanshinone ⅡA sulfonate (STS) in the primary culture of neonatal rat cardiomyocytes were investigated. Twelve neonatal clean grade Wistar rats were selected. The cardiomyocytes were isolated, cultured and divided according to different treatments in the medium. The cardiomyocyte size was determined by phase contrast microscope, and the rate of protein synthesis was measured by [3H]-Leucine incorporation. The c-fos and c-jun mRNA expression in cardiomyocytes was detected by reverse transcription polymerase chain reaction (RT-PCR). It was found after cardiomyocytes were treated with AngⅡ for 30 min, the c-fos and c-jun mRNA expression in cardiomyocytes was increased significantly (P〈0.01). After treatment with AngⅡ for 24 h, the rate of protein synthesis in AngⅡ group was significantly increased as compared with control group (P〈0.01). After treatment with AngⅡ for 7 days, the size of cardiomyocytes in AngⅡ group was increased obviously as compared with control group (P〈0.05). After pretreatment with STS or Valsartan before AngⅡ treatment, both of them could inhibit the above effects of AngⅡ (P〈0.05 or P〈0.01). It was suggested that STS could ameliorate AngⅡ-induced cardiomyocyte hy- pertrophy by inhibiting c-fos and c-jun mRNA expression and reducing protein synthesis rate of cardiomyocytes.
基金the National Natural Science Foundation of China(No.22278087)。
文摘A sustainable and practical process is presented for the direct synthesis of sodium tanshinone IIA sulfonate(STS).Our approach was inspired by the well-established and industrially applied batch synthetic route for STS production.We constructed a telescoped two-step continuous flow platform.This involved a continuous tanshinone IIA sulfonation and in-line salt formation.For the setup,we constructed a 3D circular cyclone-type microreactor using femtosecond laser micromachining.Compared to the 68%yield for 2 h in batch,the two-step continuous flow had an STS yield of 90%,achieved for a total residence time of<3.0 min under optimal conditions.The proposed continuous flow method vastly simplified the operation and improved procedural safety,while significantly reducing the required acid content and wastewater production.
基金supported by the National Natural Science Foundation of China(82104962,82104647,82274271)Scientific Research Project of Guangdong Provincial Administration of Traditional Chinese Medicine(20211070)+2 种基金Science and Technology Planning Project of Guangzhou(202102010301)Young Talents Support Project from China Association of Chinese Medicine(2019-QNRC2-C06)Team of Prevention and Treatment of Acute Myocardial Infarction with Chinese Medicine(2019KCXTD009)
文摘Myocardial damage resulting from acute myocardial infarction often leads to progressive heart failure and sudden death,highlighting the urgent clinical need for effective therapies.Recently,tanshinoneⅡA has been identified as a promising therapeutic agent for myocardial infarction.However,efficient delivery remains a major issue that limits clinical translation.To address this problem,an injectable thermosensitive poly(lactic acid-co-glycolic acid)-block-poly(ethylene glycol)-block-poly(lactic acid-co-glycolic acid)gel(PLGA-PEG-PLGA)system encapsulating tanshinoneⅡA-loaded reactive oxygen species-sensitive microspheres(Gel-MS/tanshinoneⅡA)has been designed and synthesized in this study.The thermosensitive hydrogel exhibits good mechanical properties after reaching body temperature.Microspheres initially immobilized by the gel exhibit excellent reactive oxygen species-triggered release properties in a high-reactive oxygen species environment after myocardial infarction onset.As a result,encapsulated tanshinoneⅡA is effectively released into the infarcted myocardium,where it exerts local anti-pyroptotic and anti-inflammatory effects.Importantly,the combined advantages of this technique contribute to the mitigation of left ventricular remodeling and the restoration of cardiac function following tanshinoneⅡA.Therefore,this novel,precision-guided intra-tissue therapeutic system allows for customized local release of tanshinoneⅡA,presenting a promising alternative treatment strategy aimed at inducing beneficial ventricular remodeling in the post-infarct heart.
基金Supported by 2020 Guangxi Zhuang Autonomous Region Health Care Commission Self-Financing Research Projects,No.Z202000962023 Guangxi University Young and Middle-Aged Teachers’Basic Research Ability Improvement Project,No.2023KY0091+1 种基金National Natural Science Foundation of China,No.82260241the Natural Science Foundation of Guangxi Province,No.2015GXNSFAA139171 and No.2020GXNSFAA259053.
文摘BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.
文摘Objective: To observe the effects of sodium tanshinone ⅡA sulfonate (STS) on angiotensin Ⅱ (Ang Ⅱ)-induced hypertrophy of myocardial cells through the expression of phosphorylated extracellular signal-regulated kinase (p-ERK1/2). Methods: In the primary culture of neonatal rat myocardial cells, the total protein content in myocardial cells was determined by coomassie brilliant blue and the protein synthesis rate was measured by [3H]-Leucine incorporation as indexes for hypertrophy of myocardial cells. The expression of p-ERK1/2 was determined using Western blot and immunofluorescence labeling. Results: (1) The total protein and protein synthesis rate increased significantly in contrast to the control group after the myocardial cells were stimulated by Ang Ⅱ (1 μ mol/L) for 24 h; STS markedly inhibited the increment of the total protein level induced by Ang Ⅱ and the syntheses of protein. (2) After pretreatment of myocardial cells with Ang Ⅱ (1 μmol/L) for 5 min, the p-ERK1/2 protein expression was increased, with the most obvious effect shown at about 10 min; pretreatment of myocardial cells with STS at different doses (2, 10, 50μmol/L) for 30 min resulted in obvious inhibition of the expression of p-ERK1/2 stimulated by Ang Ⅱ in a dose-dependent manner. (3) After the myocardial cells were stimulated by AngⅡ (1 μ mol/L), the immunofluorescence of ERK1/2 rapidly appeared in the nucleus. The activation and translocation process of ERK1/2 induced by Ang Ⅱ was blocked distinctly by STS. (Conclusion: STS inhibited the myocardial cell hypertrophy induced by Ang Ⅱ, and the mechanism may be associated with the inhibition of p-ERK1/2 expression.
基金the National Natural Science Foundation of China(No.30500657)
文摘Objective: To investigate the effects of sodium tanshinone Ⅱ A sulfonate (STS) on the hypertrophy induced by angiotensin Ⅱ(Ang Ⅱ) in primary cultured neonatal rat cardiac myocytes. Methods: The effect of STS on cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-3,5- phenytetrazoliumromide (MTT) assay. As indexes for cardiocyte hypertrophy, cell size was determined by phase contrast microscopy and protein synthesis rate was measured by 3H-leucine incorporation. The proto-oncogene c-fos mRNA expression of cardiocytes was assessed using reverse transcription polymerase chain reaction (RT-PCR). Results: STS could inhibit cardiocyte hypertrophy, increase the protein synthesis rate and enhance proto-oncogene c-fos mRNA expression in cardiocytes induced by Ang Ⅱ(P〈0.01), with an effect similar to that of Valsartan, the Ang Ⅱ receptor antagonist. Conclusion: STS can prevent the hypertrophy of cardiac myocytes induced by Ang Ⅱ, which may be related to its inhibition of the expression of proto-oncogene c-fos mRNA.
基金Supported by a Grant from Hubei Province Science and Technique Foundation(No.2009CDB371)
文摘Objective: To explore the protective effect of sodium tanshinone ⅡA sulfonate (STS) on small intestine injury in rats with sepsis and its possible mechanism. Methods: According to a random number table, 24 Tats were randomly divided into 3 groups: sham operation group (sham group), sepsis model group (model group) and STS treatment group (STS group), with 8 Tats in each group. A rat model of sepsis was induced by cecal ligation and puncture (CLP) for 5 h. STS (1 mg/kg) was slowly injected through the right external jugular vein after CLP. The histopathologic changes in the intestine tissue were observed under a light microscope, and the intestinal epithelial cell apoptosis was evaluated by terminal deoxynucleoddyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) method. The expressions of Bcl-2, Bax and nuclear factor κB (NF- κ B) p65 in the intestinal tissue was determined by Western blot. The levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) in the intestinal tissue were determined using enzyme-linked immuno-sorbent assay (ELISA). Results: Obvious injuries were observed in the intestinal tissue in the CLP group compared with the sham group. The expression of NF- K B p65 and the levels of TNF- α and IL-6 were up-regulated after CLP, the apoptosis of intestinal epithelial cells was increased after CLP, and the ratio of Bcl-2 to Bax was decreased. STS post- treatment could attenuate the injury on the intestinal tissue induced by CLP, decrease the apoptosis of intestinal epithelial cells and the levels of NF- κ B p65, TNF-α and IL-6, and increase the ratio of Bcl-2 to Bax. Conclusion: STS can protect the small intestine in rats with sepsis, and the mechanism may be associated with the inhibition of intestinal epithelial apoptosis and the reduction of activation of inflammatory cytokines.
基金the National Natural Science Foundation of China(No.81860047)the Postdoctoral Science Foundation of China(No.22019M653474)。
文摘This study investigated the effects of X-ray irradiation on primary rat cardiac fibroblasts(CFs) and its potential mechanism, as well as whether sodium tanshinone ⅡA sulfonate(STS) has protective effect on CFs and its possible mechanism. Our data demonstrated that X-rays inhibited cell growth and increased oxidative stress in CFs, and STS mitigated X-ray-induced injury. Enzyme-linked immuno-sorbent assay showed that X-rays increased the levels of secreted angiotensin Ⅱ(Ang Ⅱ) and brain natriuretic peptide(BNP). STS inhibited the X-ray-induced increases in Ang Ⅱ and BNP release. Apoptosis and cell cycle of CFs were analyzed using flow cytometry. X-rays induced apoptosis in CFs, whereas STS inhibited apoptosis in CFs after X-ray irradiation. X-rays induced S-phase cell cycle arrest in CFs, which could be reversed by STS. X-rays increased the expression of phosphorylated-P38/P38,cleaved caspase-3 and caspase-3 as well as decreased the expression of phosphorylated extracellular signal-regulated kinase 1/2(ERK1/2)/ERK 1/2 and B cell lymphoma 2(Bcl-2)/Bcl-2 associated X protein(BAX) in CFs, as shown by Western blotting. STS mitigated the X-ray radiation-induced expression changes of these proteins. In conclusion, our results demonstrated that STS may potentially be developed as a medical countermeasure to mitigate radiation-induced cardiac damage.
基金Supported by the Twelve Five-Year Plan of China(No.2013BAI02B01)the National Traditional Chinese Medicine Clinical Research Center Project(No.2015ZSC02)
文摘Objective:To assess whether an adjunctive therapy of Sodium Tanshinone ⅡA Sulfonate Injection(STS)is effective and safe in improving clinical outcomes in patients with coronary heart disease(CHD).Methods:A literature search was conducted through PubMed,the Cochrane Library,Knowledge Infrastructure Databases(CNKI),Chinese Biomedical Literature Database(SinoMed),Chinese Science and Technology Periodical Database(VIP)and Wanfang Database up to August 2017.Randomized controlled trials(RCTs)comparing STS with placebo or no additional treatments on the basis of standard conventional medicine therapies were included.The outcomes were all-cause mortality,major acute cardiovascular events(MACEs),cardiac function and inflammatory factors.The risk of bias assessment according to the Cochrane Handbook was used to evaluate the methodological quality of the included trials.Revman 5.3 software was used for data analyses.Results:A total of 22 RCTs involving 1,873 participants were included.All of the trials used STS as adjunctive treatment to standard conventional medicine therapy.Due to the poor quality of methodologies of most trials,only limited evidence showed that a combination of STS with percutaneous coronary intervention(PCI)or thrombolytic therapy(TT)might be more effective on reduction of all cause death rate than TT alone[risk ratio(RR)0.25,95% confidence interval(CI)0.07 to 0.87]or PCI alone(RR 0.42,95%CI 0.04 to 4.36).The results of 6 trials comparing STS plus TT with TT alone showed that the addition of STS significantly reduced the incidence of cardiac shock(RR 0.35,95%CI 0.14 to 0.86),heart failure(RR 0.41,95% CI 0.20 to 0.83)and arrhythmia(RR 0.21,95%CI 0.12 to 0.46).STS combined with TT also showed a superior effect on cardiac function and inflammatory factor.No severe adverse event was reported related to STS.Conclusions:As an adjunctive therapy,STS combined with standard conventional medicine seems to be more effective on all-cause mortality or MACEs than conventional medicine treatment alone with less side effects.However,we cannot make a firm conclusion due to low quality of inclusion trials.Well-designed trials with high methodological quality are needed to validate the effect of STS for CHD patients.
基金This project was supported by a grant from Natural Sciences Foundation of Hubei Province(No.2000J064).
文摘In order to .study the effect of tanshinone ⅡA on growth and apoptosis in human hepatoma cell line BEL-7402 in vitro, the human hepatoma cell line BEL-7402 was treated with tanshinone ⅡA at various concentrations for 72 h. Growth suppression was evaluated by MTT assay; apoptosis-relat-ed alterations in morphology and biochemistry were ascertained under cytochemical staining (Hoechst 33258), transmission electron microscopy (TEM), and DNA agarose gel electrophoresis. Apoptotic rate was quantified by flow cytometry (FCM). The results showed that Tanshinone ⅡA could inhibit the growth of hepatoma cells in a dose-dependent manner, with IC50 value being 6. 28μg/ml. After treatment with 1-10μg/ml tanshinone ⅡA for 72 h, BEL-7402 cells apoptosis with nuclear chro-matin condensation and fragmentation as well as cell shrinkage and the formation of apoptotic bodies were observed. DNA ladder could be demonstrated on DNA electrophoresis. FCM analysis showed hypodiploid peaks on histogram, and the apoptotic rates at μg/ml concentration for 12 h> 24 h, 36 h, 48 h and 72 h were (2. 32±0. 16)%, (3. 01±0. 35) %, (3. 87±0. 43)%, (6. 73±0. 58)% and (20. 85 ± 1. 74) % respectively, which were all significantly higher than those in the control group (1. 07±0. 13) %. It is concluded that Tanshinone ⅡA could induce human hepatoma cell line BEL-7402 apoptosis, which may be related to the mechanism of growth inhibition.
文摘To explore the effects of Tanshinone Ⅱ A on the proliferation, apoptosis and gene expression of p53 and bcl-2 in human gastric carcinoma MKN-45 cells. Cell count and MTT assay were used to study the proliferation-inhibiting effect of Tanshinone Ⅱ A on MKN-45 cells. The effect of Tanshinone Ⅱ A on the cell cycle and apoptosis of MKN-45 cells were examined by propidium iodide (PI) staining and flow cytometry. Semi-quantitative RT-PCR was used to further verify the ex- pression of p53 and bcl-2 gene after exposure to Tanshinone Ⅱ A in MKN-45 cells. The results showed that Tanshinone Ⅱ A significantly inhibited the growth and proliferation of MKN-45 cells in a dose- and time-dependent manner (P〈0.05). Tanshinone Ⅱ A arrested MKN-45 cells in G2/M phase which led to an obvious accumulation of G2/M phase cells while decreased number of Go/G1 phase cells. This resulted in apoptosis of MKN-45 cells and the apoptosis rate was as high as 43.91% after treatment with 2.0 lag/mL Tanshinone Ⅱ A for 96 h. It was also found that Tanshinone Ⅱ A up-regulated expression of p53 gene and down-regulated expression of bcl-2 gene. The cytostatic and antiproliferative effect of Tanshinone Ⅱ A makes it a promising anticancer agent for the treatment of gastric carcinoma.
基金supported by a grant from the National Natural Science Foundation of China(No.30500657)
文摘To investigate the molecular mechanism by which Tanshinone Ⅱ A (TSN Ⅱ A) prevents left ventricular hypertrophy (LVH), we examined the expression of AT1R, TGF-β1 and Smads gene in the hypertrophic myocardium of hypertensive rats with abdominal aorta constriction. LVH model was established by creating abdominal aorta constriction. Four weeks later, animals were randomly divided into 4 groups with 8 animals in each. One group was used as model control, the other three groups were treated with TSN ⅡA (20 mg/kg), TSN ⅡA (10 mg/kg) and valsartan (10 mg/kg), respectively. Another 8 SD rats were subjected to sham surgery and served as blank control. After 8- week treatment, the caudal artery pressure of the animals was measured. The tissues of left ventricle were taken for the measurement of the left ventricular mass index (LVMI) and pathological sectioning and HE-staining were used for determining the myocardial fiber dimension (MFD). The mRNA expression of AT1R, protein expression of TGF-betal and activity of Smad-2, 4, 7 were detected by RT-PCR and Western blotting, respectively. Our results showed that (1) the blood pressure of rats treated with TSN Ⅱ A, either at high or low dose, was significantly higher than those in the control and valsartan-treated group (P〈0.01, P〈0.05); (2) LVMI and MFD in TSN Ⅱ A and valsartan-treated rats were higher than those in the control group (P〈0.05) but significantly lower than those in the model control (P〈0.01); (3) the high doses of TSN Ⅱ A and valsartan significantly down-regulated the mRNA expression of AT 1R and protein expression of TGF-beta l and Smad-3 in the hypertrophic myocardium (P〈0.01), and TGF-betal in valsartan-treated animals was more significantly lower than that in rats treated with TSN Ⅱ A; (4) the two doses of TSN Ⅱ A and valsartan significantly up-regulated the protein expression of Smad-7 in the hypertrophic myocardium (P〈0.01), and Smad-7 in the animals treated with high-dose TSN Ⅱ A was significantly higher than that in rats treated with valsartan. It is concluded that inhibition of myocardial hypertrophy induced by TSN ⅡA independent of blood pressure. The underlying mechanism might be the down-regulated expression of AT1R mRNA and Smad-3, increased production of Smad-7, and blocking effect of TSN Ⅱ A on TGF betal/Smads signal pathway in local myocardium.
基金support by program for New Century Excellent Talents in University (NCET)National Natural Science Foundation of China(No.305722321)Lab of Organic Functional Molecules,the Sino-French Institute of ECNU for supports.
文摘Two series of tanshinone ⅡA derivatives were synthesized and evaluated for their antitumor activities as Cdc25 phosphatase inhibitors. Most of them demonstrated potent Cdc25 inhibitory activity and powerful cytotoxicity against A549 tumor cell line, producing IC50 values in very low micromolar range. At last, the preliminary SAR was discussed.
文摘Total tanshinones are lipophilic active constituents extracted from Salvia miltiorrhiza Bge.Tanshinone ⅡA and cryptotanshinone are the major components in total tanshinones.However, the bioavailability of both compounds is low due to poor water solubility. To enhance the solubility and dissolution rate of tanshinone ⅡA, cryptotanshinone and total tanshinones,three common used hydrophilic carriers including PEG 6000, poloxamer 188 and PVP K30 were used to prepare the solid dispersions at different ratios, respectively. The solid dispersions were characterised by scanning electron microscopy(SEM), differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR). The results of powder X-ray diffraction confirmed the microcrystal state of total tanshinones in solid dispersions and no chemical interaction between total tanshinones and carriers was observed in FTIR spectra. The solubility and dissolution rate of tanshinone ⅡA and cryptotanshinone were significantly increased in all solid dispersions. Regarding tanshinone ⅡA, the solubility and dissolution rate of in solid dispersions prepared with poloxamer 188 were significantly higher than that with PEG 6000 and PVP K30. The higher solubility and dissolution rate of cryptotanshinone were obtained in solid dispersion of PVP K30 than that of PEG 6000 solid dispersions but no significant difference from poloxamer 188 solid dispersions. The results indicate that the superior carrier for preparation of tanshinone ⅡA and total tanshinones solid dispersions is poloxamer 188, and that for cryptotanshinone is PVP K30.
基金a grant from Hubei Natural Science Foundation of China (No.2007ABA272).
文摘The effects of tanshinone ⅡA (TSN) on transforming growth factor β1 (TGFβ1) signal transduction in renal interstitial fibroblasts of rats were studied in order to investigate its mechanism in prevention of renal interstitial fibrosis. Rat renal fibroblasts of the line NRK/49F were cultured in vitro, stimulated with 5 ng/mL TGFβ1 and pretreated with 10-6, 10-5, 10-4 mol/L TSN respectively. The mRNA levels of fibronectin (FN) were examined by RT-PCR. The protein expression of FN and Smads was detected by Western blot. TGFβ1 induced the expression of FN mRNA and Smads in a time-dependent manner in a certain range. Compared with pre-stimulation, the FN mRNA and protein levels were increased by 1.1 times and 1.5 times respectively (P〈0.01, P〈0.01), and the protein expression of phosphorylated Smad2/3 (p-Smad2/3) increased by 7 times at the end of TGFβ1 stimulation (P〈0.01). TSN pretreatment may down-regulate the FN and p-Smad2/3 expression in a dose-dependent manner. 10-6 mol/L TSN pretreatment had no effect on the FN and p-Smad2/3 expression (both P〉0.05). After pretreatment with 10-5 and 10-4 mol/L TSN, the FN mRNA levels were decreased by 28.1% and 43.8% respectively (P〈0.05, P〈0.01), the FN protein levels were decreased by 40% and 44% respectively (P〈0.05, P〈0.05), and the p-Smad2/3 protein expression were decreased by 40% and 65% respectively (P〈0.05, P〈0.01). The inhibitory effect of TSN on renal interstitial fibrosis may be related to its blocking effect on TGFβ1-Smads signal pathway in renal intersti- tial fibroblasts.
基金supported by a grant from the Natural Science Foundation of Hubei Province of China(Nos.2009CDB092,2007ABA272)
文摘This study examined the effect of tanshinoneⅡA (TSNⅡA) on the cardiac fibrosis induced by transforming growth factor β1 (TGF-β1) and the possible mechanisms. Cardiac fibroblasts were isolated from cardiac tissues of neonatal Sprague-Dawley (SD) rats by the trypsin digestion and differential adhesion method. The cells were treated with 5 ng/mL TGF-β1 alone or pretreated with TSNⅡA at different concentrations (10–5 mol/L, 10–4 mol/L). Immunocytochemistry was used for cell identification, RT-PCR for detection of the mRNA expression of connective tissue growth factor (CTGF) and collagen type Ⅰ (COLⅠ), Western blotting for detection of the protein expression of Smad7 and Smad3, and immunohistochemistry and immunofluorescence staining for detection of the protein expression of phosphorylated Smad3 (p-Smad3), CTGF and COLⅠ. The results showed that TGF-β1 induced the expression of CTGF, COLⅠ, p-Smad3 and Smad7 in a time-dependent manner. The mRNA expression of CTGF and COLⅠ was significantly increased 24 h after TGF-β1 stimulation (P<0.01 for all). The protein expression of p-Smad3 and Smad7 reached a peak 1 h after TGF-β1 stimulation, much higher than the baseline level (P<0.01 for all). Pretreatment with high concentration of TSNⅡA resulted in a decrease in the expression of p-Smad3, CTGF and COLⅠ (P<0.01). The protein expression of Smad7 was substantially upregulated after pretreatment with two concentrations of TSNⅡA as compared with that at 2h post TGF-β1 stimulation (P<0.05 for low concentration of TSNⅡA; P<0.01 for high concentration of TSNⅡA). It was concluded that TSNⅡA may exert an inhibitory effect on cardiac fibrosis by upregulating the expression of Smad7, suppressing the TGF-β1-induced phosphorylation of Smad3 and partially blocking the TGF-β1-Smads signaling pathway.
文摘Danshen, the rhizome of Salvia miltiorrhiza Bunge, has been used in traditional Chinese medicine (TCM) for treatment of various diseases. Tanshinone IIA (TSA) is one of the main active components of Danshen, which has multiple bioactivities. This article reviews the research progress of TSA in the treatment of cardiovascular disease, anti-inflammatory and immune, anti-tumor, liver protection, neuroprotection. It provides more ideas for the clinical application of TSA and the development of drug resistance.
文摘The calcium binding of erythrocyte membrane was determined in spontaneous hypertensiverats (SHR)and renovascular hypertensive rats (RVHR two-kidney, one-clip model) and the effect ofsodium tanshinone Ⅱ-A sulfonate(DS-201)on the calcium binding in SHRs was investigated. Ourresults show that the basal calcium binding was reduced in SHRs (P<0.01 vs WKY),while the maximalcalcium binding was not,but both typies calcium bindings had no significant change in RVHRs.Sodiumtanshinone Ⅱ-A sulfonate (125μ mol/L)have no effect on the calcium binding of ecythrocyte membraneof SHR in vitro.These data further support the hypothesis that there is a cell membrane abnormalitypresent in SHRs which may possibly serve as a marker genetics of in hypertension.
文摘Danshen has been used in stroke treatment for thousands of years in China. However, the underlying mechanism still remains elusive. Neuron loss is the cardinal feature of stroke. Stimulating endogenous neurogene- sis, especially neuronal differentiation, might potentially provide therapeutic effects to these diseases. To interpret Danshen' s disease-modifying effects, the effects of tanshinone 11 A (T 11 A), the major lipophilic component of Danshen, on neuronal differentiation in rat PC12 pheochromocytoma cells and the rat embryonic cortical neural stem cells (NSCs) were observed. PC12 cells and NSCs were incubated with T II A for 7 days. To detect the neu- ronal differentiation, GAP-43 expression was detected by western blots assay and β-tubulin HI expression was de- tected by immunocytochemical staining. Results showed that T Ⅱ A dose-dependently promoted neuronal differentia- tion. T Ⅱ A activated mitogen-activated protein kinase 42/44 (MAPK42/44) and its downstream transcription fac- tor, cAMP response element-binding protein (CREB). In addition , T Ⅱ A up-regulated the expressions of brain de- rived neurotrophic factor (BDNF) and nerve growth factor (NGF). The MEK inhibitor and the antagonist to the re- ceptors of NGF and BDNF could partially attenuate the differentiation effects, indicating that MAPK42/44 mediated BDNF and NGF signals were involved in T Ⅱ A' s differentiation effects. Caveolin-1 ( CAV-1 ), the major functional protein of membrane caveolae, plays critical roles in the endocytosis of exogenous materials. CAV1, which was ac-tivated by T Ⅱ A, might help T Ⅱ A transport across cell membrane to initiate its differentiation effects. It was prov- en by the evidences that suppressing the function of caveolin inhibited the differentiation effects of T Ⅱ A. There- fore, it was concluded that T Ⅱ A promoted neuronal differentiation partially through MAPK42/44 mediated B DNF and NEF signals in a caveolae-dependent manner.