为提高0.35μm 30-0-50 V BCD(bipolar-CMOS-DMOS)工艺下50 V HVPMOS的电学性能,在不改变工艺流程的基础上,仅通过微调器件结构尺寸来实现电学性能的优化.采用Silvaco公司的工艺与器件模拟软件,仿真分析了沟道长度、overlap尺寸、场氧...为提高0.35μm 30-0-50 V BCD(bipolar-CMOS-DMOS)工艺下50 V HVPMOS的电学性能,在不改变工艺流程的基础上,仅通过微调器件结构尺寸来实现电学性能的优化.采用Silvaco公司的工艺与器件模拟软件,仿真分析了沟道长度、overlap尺寸、场氧化层长度及场极板长度对50 V HVPMOS器件电学性能的影响.根据仿真结果确定了优化后的结构尺寸,并结合流片测试结果验证了优化方案的可行性.测试结果表明,优化后50 V HVPMOS的开启电压降低到了-0.98 V,击穿电压提高到了-68 V,特征导通电阻降低了13.5%,饱和电流提高了13.1%,器件的安全工作范围增大,饱和区更加平滑,无明显kink效应.展开更多
应对电源管理市场对18 V高压应用的需求,研制了一种无EPI、在一般Si衬底片上的、基于0.18μm CMOS工艺技术的集成横向扩散,金属-氧化物-半导体场效应晶体管(LDMOS)。运用Sentaurus器件仿真模拟软件完成了18 V LDMOS的设计与优化,并结合...应对电源管理市场对18 V高压应用的需求,研制了一种无EPI、在一般Si衬底片上的、基于0.18μm CMOS工艺技术的集成横向扩散,金属-氧化物-半导体场效应晶体管(LDMOS)。运用Sentaurus器件仿真模拟软件完成了18 V LDMOS的设计与优化,并结合实际的流片测试结果,对器件的直流特性、击穿电压、导通电阻进行了表征和分析。设计研制成的LDMOS不仅尺寸小、结构简单,而且可以和低压器件自主隔离集成在一起,器件性能优良且性能稳定,可以满足电源管理芯片对耐高压的基本需求。展开更多
文摘为提高0.35μm 30-0-50 V BCD(bipolar-CMOS-DMOS)工艺下50 V HVPMOS的电学性能,在不改变工艺流程的基础上,仅通过微调器件结构尺寸来实现电学性能的优化.采用Silvaco公司的工艺与器件模拟软件,仿真分析了沟道长度、overlap尺寸、场氧化层长度及场极板长度对50 V HVPMOS器件电学性能的影响.根据仿真结果确定了优化后的结构尺寸,并结合流片测试结果验证了优化方案的可行性.测试结果表明,优化后50 V HVPMOS的开启电压降低到了-0.98 V,击穿电压提高到了-68 V,特征导通电阻降低了13.5%,饱和电流提高了13.1%,器件的安全工作范围增大,饱和区更加平滑,无明显kink效应.
文摘应对电源管理市场对18 V高压应用的需求,研制了一种无EPI、在一般Si衬底片上的、基于0.18μm CMOS工艺技术的集成横向扩散,金属-氧化物-半导体场效应晶体管(LDMOS)。运用Sentaurus器件仿真模拟软件完成了18 V LDMOS的设计与优化,并结合实际的流片测试结果,对器件的直流特性、击穿电压、导通电阻进行了表征和分析。设计研制成的LDMOS不仅尺寸小、结构简单,而且可以和低压器件自主隔离集成在一起,器件性能优良且性能稳定,可以满足电源管理芯片对耐高压的基本需求。