Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at dis...Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.展开更多
The feasibility of adsorptive removal of single component organic compound(para-chlorophenol) by Calgon Filtrasorb 400(F400) carbon was investigated.The Redlich-Peterson equation was found to be the best fit model for...The feasibility of adsorptive removal of single component organic compound(para-chlorophenol) by Calgon Filtrasorb 400(F400) carbon was investigated.The Redlich-Peterson equation was found to be the best fit model for describing the equilibrium relationship between the para-chlorophenol adsorption onto F400 carbon.Four adsorption columns with different column geometry and adsorbent particle stratification were used to examine the adsorption kinetics onto F400 carbons.The Bed Depth Service Time(BDST) model was applied and modified to analyse the performance of the columns and the effect of different operating variables.When combining the effects of adsorption efficiency and the associated pressure drop of each type of adsorption columns tested,the carbon stratified tapered column has been determined to be the most efficient engineering option for removing organics,in which the enhancement of the adsorbent bed in terms of longer breakthrough time and higher saturation percentage is the greatest amongst the four types of columns with reasonably small pressure drop across the fixed-bed column.展开更多
The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Ove...The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Overall gas holdup increases with an increase in gas velocity and a decrease in solid concentration or static slurry height. Axial solid holdup becomes more uniform with increasing gas velocity, while axial gas holdup decreases from the bottom to the top. Both dry and wet pressure drops across the gas distributor increase with an increase in superficial gas velocity.展开更多
基金the National Key Basic Research Program of China(No.2012CB214904)the National Natural Science Foundation of China for Innovative Research Group(No.51221462)+2 种基金the National Natural Science Foundation of China(Nos.51304196,51134022,and 51174203)the Natural Science Foundation of Jiangsu Province of China(No. BK2012136)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120095130001)
文摘Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.
文摘The feasibility of adsorptive removal of single component organic compound(para-chlorophenol) by Calgon Filtrasorb 400(F400) carbon was investigated.The Redlich-Peterson equation was found to be the best fit model for describing the equilibrium relationship between the para-chlorophenol adsorption onto F400 carbon.Four adsorption columns with different column geometry and adsorbent particle stratification were used to examine the adsorption kinetics onto F400 carbons.The Bed Depth Service Time(BDST) model was applied and modified to analyse the performance of the columns and the effect of different operating variables.When combining the effects of adsorption efficiency and the associated pressure drop of each type of adsorption columns tested,the carbon stratified tapered column has been determined to be the most efficient engineering option for removing organics,in which the enhancement of the adsorbent bed in terms of longer breakthrough time and higher saturation percentage is the greatest amongst the four types of columns with reasonably small pressure drop across the fixed-bed column.
文摘The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Overall gas holdup increases with an increase in gas velocity and a decrease in solid concentration or static slurry height. Axial solid holdup becomes more uniform with increasing gas velocity, while axial gas holdup decreases from the bottom to the top. Both dry and wet pressure drops across the gas distributor increase with an increase in superficial gas velocity.