This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by...This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications.展开更多
Highly transparent and conducting Al-Zr co-doped zinc oxide (ZAZO) thin films were successfully prepared on glass substrate by direct current (DC) magnetron sputtering at room temperature. The distance between tar...Highly transparent and conducting Al-Zr co-doped zinc oxide (ZAZO) thin films were successfully prepared on glass substrate by direct current (DC) magnetron sputtering at room temperature. The distance between target and substrate was varied from 45 to 70 mm. All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The crystallinity increases obviously and the electrical resistivity decreases when the distance between target and substrate decreases from 70 to 50 mm. However, as the distance decreases further, the crystallinity decreases and the electrical resistivity increases. When the distance between target and substrate is 50 ram, it is found that the lowest resistivity is 6.9 × 10^-4Ω cm. All the deposited films show a high average transmittance of above 92% in the visible range.展开更多
High power pulsed magnetron sputtering(HPPMS), a novel physical vapor deposition technology, was applied to prepare vanadium films on aluminum alloy substrate in this paper. The influence of target–substrate dista...High power pulsed magnetron sputtering(HPPMS), a novel physical vapor deposition technology, was applied to prepare vanadium films on aluminum alloy substrate in this paper. The influence of target–substrate distance(Dt–s)(ranging from 8 to 20 cm) on phase structure, surface morphology, deposition rate, and corrosion resistance of vanadium films was investigated. The results show that the vanadium films are textured with a preferential orientation in the(111) direction except for that fabricated at 20 cm. With Dt–sincreasing, the intensity of(111) diffraction peak of the films decreases and there exists a proper distance leading to the minimum surface roughness of 0.65 nm. The deposition rate decreases with Dt–sincreasing. All the V-coated aluminum samples possess better corrosion resistance than the control sample. The sample fabricated at Dt–sof 12 cm demonstrates the best corrosion resistance with the corrosion potential increasing by 0.19 V and the corrosion current decreasing by an order of magnitude compared with that of the substrate. The samples gain further improvement in corrosion resistance after annealing, and if compared with that of annealed aluminum alloy, then the corrosion potential of the sample fabricated at 20 cm increases by 0.415 V and the corrosion current decreases by two orders of magnitude after annealed at 200 °C. If the annealing temperature further rises to 300 °C, then the corrosion resistance of samples increases less obviously than that of the control sample.展开更多
This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based...This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based on the communication and memory characteristics of particle swarm optimization(PSO). IGSA technique is incorporated into the multi-robot system in a dynamic framework, which will provide robust performance, self-deterministic cooperation, and coping with an inhospitable environment. The robots in the team make independent decisions, coordinate, and cooperate with each other to accomplish a common goal using the developed IGSA. A path planning scheme has been developed using IGSA to optimally obtain the succeeding positions of the robots from the existing position in the proposed environment. Finally, the analytical and experimental results of the multi-robot path planning were compared with those obtained by IGSA, GSA and differential evolution(DE) in a similar environment. The simulation and the Khepera environment result show outperforms of IGSA as compared to GSA and DE with respect to the average total trajectory path deviation, average uncovered trajectory target distance and energy optimization in terms of rotation.展开更多
基金The research was funded by Science and Technology Project of Hebei Education Department(Project Number:QN2022198).Y.C.received the grant.
文摘This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications.
文摘Highly transparent and conducting Al-Zr co-doped zinc oxide (ZAZO) thin films were successfully prepared on glass substrate by direct current (DC) magnetron sputtering at room temperature. The distance between target and substrate was varied from 45 to 70 mm. All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The crystallinity increases obviously and the electrical resistivity decreases when the distance between target and substrate decreases from 70 to 50 mm. However, as the distance decreases further, the crystallinity decreases and the electrical resistivity increases. When the distance between target and substrate is 50 ram, it is found that the lowest resistivity is 6.9 × 10^-4Ω cm. All the deposited films show a high average transmittance of above 92% in the visible range.
基金financially supported by the National Natural Science Foundation of China (Nos. 51175118 and U1330110)the Open Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (No. SPC201104)
文摘High power pulsed magnetron sputtering(HPPMS), a novel physical vapor deposition technology, was applied to prepare vanadium films on aluminum alloy substrate in this paper. The influence of target–substrate distance(Dt–s)(ranging from 8 to 20 cm) on phase structure, surface morphology, deposition rate, and corrosion resistance of vanadium films was investigated. The results show that the vanadium films are textured with a preferential orientation in the(111) direction except for that fabricated at 20 cm. With Dt–sincreasing, the intensity of(111) diffraction peak of the films decreases and there exists a proper distance leading to the minimum surface roughness of 0.65 nm. The deposition rate decreases with Dt–sincreasing. All the V-coated aluminum samples possess better corrosion resistance than the control sample. The sample fabricated at Dt–sof 12 cm demonstrates the best corrosion resistance with the corrosion potential increasing by 0.19 V and the corrosion current decreasing by an order of magnitude compared with that of the substrate. The samples gain further improvement in corrosion resistance after annealing, and if compared with that of annealed aluminum alloy, then the corrosion potential of the sample fabricated at 20 cm increases by 0.415 V and the corrosion current decreases by two orders of magnitude after annealed at 200 °C. If the annealing temperature further rises to 300 °C, then the corrosion resistance of samples increases less obviously than that of the control sample.
文摘This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based on the communication and memory characteristics of particle swarm optimization(PSO). IGSA technique is incorporated into the multi-robot system in a dynamic framework, which will provide robust performance, self-deterministic cooperation, and coping with an inhospitable environment. The robots in the team make independent decisions, coordinate, and cooperate with each other to accomplish a common goal using the developed IGSA. A path planning scheme has been developed using IGSA to optimally obtain the succeeding positions of the robots from the existing position in the proposed environment. Finally, the analytical and experimental results of the multi-robot path planning were compared with those obtained by IGSA, GSA and differential evolution(DE) in a similar environment. The simulation and the Khepera environment result show outperforms of IGSA as compared to GSA and DE with respect to the average total trajectory path deviation, average uncovered trajectory target distance and energy optimization in terms of rotation.