Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–b...Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field.展开更多
Prostate cancer is a common male malignant tumor,and bone metastasis is one of the common complications in the late stage of prostate cancer.The mechanism of prostate cancer bone metastasis is a complex process involv...Prostate cancer is a common male malignant tumor,and bone metastasis is one of the common complications in the late stage of prostate cancer.The mechanism of prostate cancer bone metastasis is a complex process involving multiple factors and steps.In recent years,with in-depth research on the mechanism of prostate cancer bone metastasis and the development of new drugs,important progress has been made in the treatment of prostate cancer bone metastasis.Based on this,this article introduces the mechanism of prostate cancer bone metastasis and the research progress of several bone-targeted drugs to provide reference and inspiration for future research.展开更多
Background:Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis.Although primary prevention drugs,including non-selectiveβ-blockers,have effectively reduced the incide...Background:Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis.Although primary prevention drugs,including non-selectiveβ-blockers,have effectively reduced the incidence of bleeding,their efficacy is limited due to side effects and related contraindications.With recent advances in precision medicine,precise drug treatment provides better treatment efficacy.Data sources:Literature search was conducted in PubMed,MEDLINE and Web of Science for relevant articles published up to May 2022.Information on clinical trials was obtained from https://clinicaltrials.gov/and http://www.chictr.org.cn/.Results:The in-depth understanding of the pathogenesis and advances of portal hypertension has enabled the discovery of multiple molecular targets for promising drugs.According to the site of action,these drugs could be classified into four classes:intrahepatic,extrahepatic,both intrahepatic and extrahepatic targets and others.All these classes of drugs offer advantages over traditional treatments in prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.Conclusions:This review classified and summarized the promising drugs,which prevent gastroesophageal variceal bleeding by targeting specific markers of pathogenesis of portal hypertension,demonstrating the significance of using the precision medicine strategy to discover and develop promising drugs for the primary prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.展开更多
Pancreatic cancer is highly aggressive and lethal.Due to the lack of effective methods for detecting the disease at an early stage,pancreatic cancer is frequently diagnosed late.Gemcitabine has been the standard chemo...Pancreatic cancer is highly aggressive and lethal.Due to the lack of effective methods for detecting the disease at an early stage,pancreatic cancer is frequently diagnosed late.Gemcitabine has been the standard chemotherapy drug for patients with pancreatic cancer for over 20 years,but its anti-tumor effect is limited.Therefore,FOLFIRINOX(leucovorin,fluorouracil,irinotecan,oxaliplatin)as well as combination therapies using gemcitabine and conventional agents,such as cisplatin and capecitabine,has also been administered;however,these have not resulted in complete remission.Therefore,there is a need to develop novel and effective therapies for pancreatic cancer.Recently,some studies have reported that combinations of gemcitabine and targeted drugs have had significant antitumor effects on pancreatic cancer cells.As gemcitabine induced DNA damage response,the proteins related to DNA damage response can be suitable additional targets for novel gemcitabine-based combination therapy.Furthermore,KRAS/RAF/MEK/ERK signaling triggered by oncogenic mutated KRAS and autophagy are frequently activated in pancreatic cancer.Therefore,these characteristics of pancreatic cancer are potential targets for developing effective novel therapies.In this minireview,combinations of gemcitabine and targeted drugs to these characteristics,combinations of targeted drugs,combinations of natural products and anti-cancer agents,including gemcitabine,and combinations among natural products are discussed.展开更多
In the last few decades numbers of review and research articles have been published on niosomes. This shows the relevant interest of academias & researchers in niosomes because of the advantages sponsored by them ...In the last few decades numbers of review and research articles have been published on niosomes. This shows the relevant interest of academias & researchers in niosomes because of the advantages sponsored by them over other colloidal drug delivery systems. Niosomes formation occurs when non-ionic surfactant vesicles assemble themselves. Various antineoplastic agents are used in chemotherapy, but they have some drawbacks that these agents cause cell death in normal tissues as well. There are two approaches to overcome this limitation. First, to modify the structure of existing drugs, but this will not possible because it changes the properties of drugs. Second, the development of nano-carriers like liposomes, dendrimers, nanoparticles, niosomes et al. Among all, niosomes (non-ionic surfactant vesicles) have more advantages besides all nano-carriers. Drugs either hydrophilic in nature or hydrophobic in nature, both can be incorporated in niosomes. And by embedding specific ligands over vesicular surface enables us to target the drug to specific cancer cells.展开更多
Objective:Chronic fatigue syndrome(CFS)is a prevalent symptom of post-coronavirus disease 2019(COVID-19)and is associated with unclear disease mechanisms.The herbal medicine Qingjin Yiqi granules(QJYQ)constitute a cli...Objective:Chronic fatigue syndrome(CFS)is a prevalent symptom of post-coronavirus disease 2019(COVID-19)and is associated with unclear disease mechanisms.The herbal medicine Qingjin Yiqi granules(QJYQ)constitute a clinically approved formula for treating post-COVID-19;however,its potential as a drug target for treating CFS remains largely unknown.This study aimed to identify novel causal factors for CFS and elucidate the potential targets and pharmacological mechanisms of action of QJYQ in treating CFS.Methods:This prospective cohort analysis included 4,212 adults aged≥65 years who were followed up for 7 years with 435 incident CFS cases.Causal modeling and multivariate logistic regression analysis were performed to identify the potential causal determinants of CFS.A proteome-wide,two-sample Mendelian randomization(MR)analysis was employed to explore the proteins associated with the identified causal factors of CFS,which may serve as potential drug targets.Furthermore,we performed a virtual screening analysis to assess the binding affinity between the bioactive compounds in QJYQ and CFS-associated proteins.Results:Among 4,212 participants(47.5%men)with a median age of 69 years(interquartile range:69–70 years)enrolled in 2004,435 developed CFS by 2011.Causal graph analysis with multivariate logistic regression identified frequent cough(odds ratio:1.74,95%confidence interval[CI]:1.15–2.63)and insomnia(odds ratio:2.59,95%CI:1.77–3.79)as novel causal factors of CFS.Proteome-wide MR analysis revealed that the upregulation of endothelial cell-selective adhesion molecule(ESAM)was causally linked to both chronic cough(odds ratio:1.019,95%CI:1.012–1.026,P=2.75 e^(−05))and insomnia(odds ratio:1.015,95%CI:1.008–1.022,P=4.40 e^(−08))in CFS.The major bioactive compounds of QJYQ,ginsenoside Rb2(docking score:−6.03)and RG4(docking score:−6.15),bound to ESAM with high affinity based on virtual screening.Conclusions:Our integrated analytical framework combining epidemiological,genetic,and in silico data provides a novel strategy for elucidating complex disease mechanisms,such as CFS,and informing models of action of traditional Chinese medicines,such as QJYQ.Further validation in animal models is warranted to confirm the potential pharmacological effects of QJYQ on ESAM and as a treatment for CFS.展开更多
Background:Andrographis paniculata has been widely reported as an herbal plant for malaria treatment.The increasing rate of resistance to recommended antimalarial drugs has justified the need for a continuous search f...Background:Andrographis paniculata has been widely reported as an herbal plant for malaria treatment.The increasing rate of resistance to recommended antimalarial drugs has justified the need for a continuous search for new and more potent drugs that target all stages of the Plasmodium falciparum life cycle from natural plant sources.This study aimed to determine the antiplasmodial effect of phytocompounds derived from A.paniculata on the stages of plasmodium falciparum.Methods:Phytocompounds from A.paniculata were identified by Gas Chromatography-Mass Spectrophotometry(GCMS)analysis.The phytocompounds were screened for their druggability using Lipinski’s rule of five and subjected to Absorption,Distribution,Metabolism,Excretion,Toxicity(ADMET)and druglikeness analysis.The phytocompounds were docked against some validated drug targets at different stages of Plasmodium falciparum(hepatic,asexual,sexual,and vector targets)using PyRx software to analyze the inhibitory potential and protein-ligand interaction.Thereafter,the stability and flexibility of the best complexes were assessed through molecular dynamics simulations at 50ns using WebGRO.Result:The 7a-Isopropenyl-4,5-dimethyloctahydroinden-4-yl exhibited a higher binding affinity and better stability throughout the simulation period with P.falciparum dihydrofolate reductase-thymidylate synthase and Plasmodium falciparum M1 alanyl aminopeptidase for asexual blood stage and gametocyte stage of Plasmodium falciparum,respectively than the existing drugs.Meanwhile,N-Ethyl-3-methoxy-4-methylphenethylamine was also found to have a higher binding affinity and more stability throughout the simulation period with P.falciparum purine nucleoside phosphorylase and Plasmodium falciparum gametocyte surface protein for Hepatic schizonts stage of Plasmodium falciparum and gametocyte transmission blocking stage,respectively,than the existing drugs.Conclusion:The 7a-Isopropenyl-4,5-dimethyloctahydroinden-4-yl and N-Ethyl-3-methoxy-4 methylphenethylamine from A.paniculata are predicted as an antimalarial drug candidate.Thus,it is recommended that in vitro and in vivo bioassays be conducted on these hit compounds to validate these predictions.展开更多
The distribution of  ̄(3)H-mitoxantrone polybutyl cyanoacrylate nanospheres( ̄(3)H-DHAQ-PBCA-NS)in the viscera,muscle and tumors of human hepatocellular carcinoma (HCC)model in nude mice was studied with liquid scinti...The distribution of  ̄(3)H-mitoxantrone polybutyl cyanoacrylate nanospheres( ̄(3)H-DHAQ-PBCA-NS)in the viscera,muscle and tumors of human hepatocellular carcinoma (HCC)model in nude mice was studied with liquid scintillation counting techniique. The results showed that the  ̄(3)H-DHAQ-PBCA-NS had remarkable liver targeting effect. The content of  ̄(3)H-DHAQ-PBCA-NSin liver and heterotopic liver tumor was found to be 71.31±10. 49% of total amount of drug in animal body. It was also found that the content of  ̄(3)H-DHAQ-PBCA-NS in liver was higher than that in liver tissue, and the content of  ̄(3)H-DHAQ-PBCA-NS in annpit tumor was higher than that in armpit muscle tissue,but had no significant difference;It provides an ideal preparation for the DHAQ admini-stration.展开更多
By analyzing the observed phenomena and the data collected in the study, a multi-compartment linear circulation model for targeting drug delivery system was developed and the function formulas of the drug concentratio...By analyzing the observed phenomena and the data collected in the study, a multi-compartment linear circulation model for targeting drug delivery system was developed and the function formulas of the drug concentration-time in blood and target organ by computing were figured out. The drug concentration-time curve for target organ can be plotted with reference to the data of drug concentration in blood according to the model. The pharmacokinetic parameters of the drug in target organ could also be obtained. The practicability of the model was further checked by the curves of drug concentration-time in blood and target organ(liver) of liver-targeting nanoparticles in animal tests. Based on the liver drug concentration-time curves calculated by the function formula of the drug in target organ, the pharmacokinetic behavior of the drug in target organ(liver) was analyzed by statistical moment, and its pharmacokinetic parameters in liver were obtained. It is suggested that the (relative targeting index( can be used for quantitative evaluation of the targeting drug delivery systems.展开更多
Ultrasonic imaging is becoming the most popular medical imaging modality,owing to the low price per examination and its safety.However,blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit freq...Ultrasonic imaging is becoming the most popular medical imaging modality,owing to the low price per examination and its safety.However,blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies.For perfusion imaging,markers have been designed to enhance the contrast in B-mode imaging.These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells.In this review,the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described.Furthermore,an outline of clinical imaging applications of contrast-enhanced ultrasound is given.It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition,and how these phenomena may be utilized in ultrasonic imaging.Aided by high-speed photography,our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques.More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves,and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs.These are beginning to be accepted into clinical practice.In the long term,targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested.展开更多
The lymphatic system has an important defensive role in the human body. The metastasis of most tumors initially spreads through the surrounding lymphatic tissue and eventually forms lymphatic metastatic tumors; the tu...The lymphatic system has an important defensive role in the human body. The metastasis of most tumors initially spreads through the surrounding lymphatic tissue and eventually forms lymphatic metastatic tumors; the tumor cells may even transfer to other organs to form other types of tumors. Clinically, lymphatic metastatic tumors develop rapidly. Given the limitations of surgical resection and the low effectiveness of radiotherapy and chemotherapy, the treatment of lymphatic metastatic tumors remains a great challenge. Lymph node metastasis may lead to the further spread of tumors and may be predictive of the endpoint event. Under these circumstances, novel and effective lymphatic targeted drug delivery systems have been explored to improve the specificity of anticancer drugs to tumor cells in lymph nodes. In this review, we summarize the principles of lymphatic targeted drug delivery and discuss recent advances in the development of lymphatic targeted carriers.展开更多
Injuries to the central nervous system(CNS)such as stroke,brain,and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration.The brain has a surprising...Injuries to the central nervous system(CNS)such as stroke,brain,and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration.The brain has a surprising intrinsic capability of recovering itself after injury.However,the hostile extrinsic microenvironment significantly hinders axon regeneration.Recent advances have indicated that the inactivation of intrinsic regenerative pathways plays a pivotal role in the failure of most adult CNS neuronal regeneration.Particularly,substantial evidence has convincingly demonstrated that the mechanistic target of rapamycin(mTOR)signaling is one of the most crucial intrinsic regenerative pathways that drive axonal regeneration and sprouting in various CNS injuries.In this review,we will discuss the recent findings and highlight the critical roles of mTOR pathway in axon regeneration in different types of CNS injury.Importantly,we will demonstrate that the reactivation of this regenerative pathway can be achieved by blocking the key mTOR signaling components such as phosphatase and tensin homolog(PTEN).Given that multiple mTOR signaling components are endogenous inhibitory factors of this pathway,we will discuss the promising potential of RNA-based therapeutics which are particularly suitable for this purpose,and the fact that they have attracted substantial attention recently after the success of coronavirus disease 2019 vaccination.To specifically tackle the blood-brain barrier issue,we will review the current technology to deliver these RNA therapeutics into the brain with a focus on nanoparticle technology.We will propose the clinical application of these RNA-mediated therapies in combination with the brain-targeted drug delivery approach against mTOR signaling components as an effective and feasible therapeutic strategy aiming to enhance axonal regeneration for functional recovery after CNS injury.展开更多
L-type amino acid transporters(LATs) mainly assist the uptake of neutral amino acids into cells. Four LATs(LAT1, LAT2, LAT3 and LAT4) have so far been identified. LAT1(SLC7A5) has been attracting much attention in the...L-type amino acid transporters(LATs) mainly assist the uptake of neutral amino acids into cells. Four LATs(LAT1, LAT2, LAT3 and LAT4) have so far been identified. LAT1(SLC7A5) has been attracting much attention in the field of cancer research since it is commonly up-regulated in various cancers. Basic research has made it increasingly clear that LAT1 plays a predominant role in malignancy. The functional significance of LAT1 in cancer and the potential therapeutic application of the features of LAT1 to cancer management are described in this review.展开更多
Drug resistance is a great challenge in cancer therapy using chemotherapeutic agents. Administration of these drugs with siRNA is an efficacious strategy in this battle. Here, the present study tried to incorporate si...Drug resistance is a great challenge in cancer therapy using chemotherapeutic agents. Administration of these drugs with siRNA is an efficacious strategy in this battle. Here, the present study tried to incorporate siRNA and paclitaxel(PTX) simultaneously into a novel nanocarrier. The selectivity of carrier to target cancer tissues was optimized through conjugation of folic acid(FA) and glucose(Glu) onto its surface. The structure of nanocarrier was formed from ternary magnetic copolymers based on FeCopolyethyleneimine(FeCo-PEI) nanoparticles and polylactic acid-polyethylene glycol(PLA-PEG) gene delivery system. Biocompatibility of FeCo-PEI-PLA-PEG-FA(NPsA), FeCo-PEI-PLA-PEG-Glu(NPsB) and FeCo-PEI-PLA-PEG-FA/Glu(NPsAB) nanoparticles and also influence of PTX-loaded nanoparticles on in vitro cytotoxicity were examined using MTT assay. Besides, siRNA-FAM internalization was investigated by fluorescence microscopy. The results showed the blank nanoparticles were significantly less cytotoxic at various concentrations. Meanwhile, siRNA-FAM/PTX encapsulated nanoparticles exhibited significant anticancer activity against MCF-7 and BT-474 cell lines. NPsAB/siRNA/PTX nanoparticles showed greater effects on MCF-7 and BT-474 cells viability than NPsA/siRNA/PTX and NPsB/siRNA/PTX.Also, they induced significantly higher anticancer effects on cancer cells compared with NPsA/siRNA/PTX and NPsB/siRNA/PTX due to their multi-targeted properties using FA and Glu. We concluded that NPsAB nanoparticles have a great potential for co-delivery of both drugs and genes for use in gene therapy and chemotherapy.展开更多
In recent years, organic-inorganic hybrid nanocarriers are explored for effective drug delivery and preferable disease treatments. In this study, using 5-fluorouracil(5-FU)as electronegative model drug, a new type of ...In recent years, organic-inorganic hybrid nanocarriers are explored for effective drug delivery and preferable disease treatments. In this study, using 5-fluorouracil(5-FU)as electronegative model drug, a new type of organic-inorganic hybrid drug delivery system(LDH/HA-PEG/5-FU)was conceived and manufactured by the adsorption of PEGylated hyaluronic acid(HA-PEG)on the surface of layered double hydroxide(LDH, prepared via hydrothermal method)and the intercalation of 5-FU in the interlamination of LDH via ion exchange strategy. The drug loading amount of LDH/HA-PEG/5-FU achieved as high as 34.2%. LDH, LDH/5-FU and LDH/HA-PEG/5-FU were characterized by FT-IR, XRD, TGA, laser particle size analyzer and SEM. With the benefit of p Hdegradable feature of LDH and enzyme-degradable feature of HA, LDH/HA-PEG/5-FU showed p H-degradable and enzyme-degradable capacity in in vitro drug release. Moreover, the drug carrier LDH/HA-PEG contained biocompatible PEG and tumor-targeted HA, resulting in lower cytotoxicity and better endocytosis compared with LDH in vitro. It was suggested that the organic-inorganic hybrid drug delivery system, which was endowed with the properties of controlled release, low toxicity and tumor-targeting delivery for ameliorative cancer therapy, was advisable and might be applied further to fulfill other treatments.展开更多
Fluorescence imaging can provide valuable information on the expression,distribution,and activity of drug target proteins.Chemical probes are useful small-molecule tools for fluorescence imaging with high structural f...Fluorescence imaging can provide valuable information on the expression,distribution,and activity of drug target proteins.Chemical probes are useful small-molecule tools for fluorescence imaging with high structural flexibility and biocompatibility.In this review,we briefly introduce two classes of fluorescent probes for the visualization of drug target proteins.Enzymatically activatable probes make use of the specific enzymatic transformations that generally produce a fluorogenic response upon reacting with target enzymes.Alternatively,specific imaging can be conferred with a ligand that drives the probes to target proteins,where the labeling relies on noncovalent binding,covalent inhibition,or traceless labeling by ligand-directed chemistry.展开更多
Nanoparticles conjugated with antibody were designed as active drug delivery system to reduce the toxicity and side effects of drugs for acute myeloid leukemia(AML).Moreover,methotrexate(MTX)was chosen as modeldru...Nanoparticles conjugated with antibody were designed as active drug delivery system to reduce the toxicity and side effects of drugs for acute myeloid leukemia(AML).Moreover,methotrexate(MTX)was chosen as modeldrug and encapsulate within folic acid modified carboxymethylchitosan(FACMCS)nanoparticles through self-assembling.The chemicalstructure,morphology,release and targeting of nanoparticles were characterized by routine detection.It is demonstrated that the mean diameter is about 150 nm,the release rate increases with the decreasing of p H,the binding rate of CD33 antibody and FA-CMCS nanoparticles is about 5:2,and nanoparticles can effectively bind onto HL60 cells in vitro.The experimentalresults indicate that the FA-CMCS nanoparticles conjugated with antibody may be used as a potentialp Hsensitive drug delivery system with leukemic targeting properties.展开更多
Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although ther...Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging confirms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application.展开更多
Among the proposed techniques for delivering drugs to specific locations within human body, magnetic drug targeting prevails due to its non-invasive character and its high targeting efficiency. Magnetic targeting drug...Among the proposed techniques for delivering drugs to specific locations within human body, magnetic drug targeting prevails due to its non-invasive character and its high targeting efficiency. Magnetic targeting drug delivery is a method of carrying drug-loaded magnetic nanoparticles to a target tissue target under the applied magnetic field. This method increases the drug concentration in the target while reducing the adverse side-effects. Although there have been some theoretical analyses for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel. A mathematical model is presented to describe the hydrodynamics of ferrofiuids as drug carriers flowing in a blood vessel under the applied magnetic field. In this model, magnetic force and asymmetrical force are added, and an angular momentum equation of magnetic nanoparticles in the applied magnetic field is modeled. Engineering approximations are achieved by retaining the physically most significant items in the model due to the mathematical complexity of the motion equations. Numerical simulations are performed to obtain better insight into the theoretical model with computational fluid dynamics. Simulation results demonstrate the important parameters leading to adequate drug delivery to the target site depending on the magnetic field intensity, which coincident with those of animal experiments. Results of the analysis provide important information and suggest strategies for improving delivery in clinical application.展开更多
In recent years,the emergence of nanotechnology experienced incredible development in the field of medical sciences.During the past decade,investigating the characteristics of nanoparticles during fluid flow has been ...In recent years,the emergence of nanotechnology experienced incredible development in the field of medical sciences.During the past decade,investigating the characteristics of nanoparticles during fluid flow has been one of the intriguing issues.Nanoparticle distribution and uniformity have emerged as substantial criteria in both medical and engineering applications.Adverse effects of chemotherapy on healthy tissues are known to be a significant concern during cancer therapy.A novel treatment method of magnetic drug targeting(MDT)has emerged as a promising topical cancer treatment along with some attractive advantages of improving efficacy,fewer side effects,and reduce drug dose.During magnetic drug targeting,the appropriate movement of nanoparticles(magnetic)as carriers is essential for the therapeutic process in the blood clot removal,infection treatment,and tumor cell treatment.In this study,we have numerically investigated the behavior of an unsteady blood flowinfused with magnetic nanoparticles during MDT under the influence of a uniform external magnetic field in a microtube.An optimal homotopy asymptotic method(OHAM)is employed to compute the governing equation for unsteady electromagnetohydrodynamics flow.The influence of Hartmann number(Ha),particle mass parameter(G),particle concentration parameter(R),and electro-osmotic parameter(k)is investigated on the velocity of magnetic nanoparticles and blood flow.Results obtained show that the electro-osmotic parameter,along with Hartmann’s number,dramatically affects the velocity of magnetic nanoparticles,blood flow velocity,and flow rate.Moreover,results also reveal that at a higher Hartman number,homogeneity in nanoparticles distribution improved considerably.The particle concentration andmass parameters effectively influence the capturing effect on nanoparticles in the blood flow using a micro-tube for magnetic drug targeting.Lastly,investigation also indicates that the OHAM analysis is efficient and quick to handle the system of nonlinear equations.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82171363,82371381(to PL),82171458(to XJ)Key Research and Development Project of Shaa nxi Province,Nos.2024SF-YBXM-404(to KY)。
文摘Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field.
基金Traditional Chinese Medicine and Integrated Traditional Chinese and Western Medicine Research Project of Tianjin Municipal Administration of Traditional Chinese Medicine(2021106)Beijing-Tianjin-Hebei Traditional Chinese Medicine Collaborative Development Specialty Alliance Construction Project(First Teaching Hospital of Tianjin University of Traditional Chinese Medicine,Qingxian County Traditional Chinese Medicine Hospital).
文摘Prostate cancer is a common male malignant tumor,and bone metastasis is one of the common complications in the late stage of prostate cancer.The mechanism of prostate cancer bone metastasis is a complex process involving multiple factors and steps.In recent years,with in-depth research on the mechanism of prostate cancer bone metastasis and the development of new drugs,important progress has been made in the treatment of prostate cancer bone metastasis.Based on this,this article introduces the mechanism of prostate cancer bone metastasis and the research progress of several bone-targeted drugs to provide reference and inspiration for future research.
基金This work was supported by grants from the National Natural Science Foundation of China(81902484)China Postdoctoral Science Foundation(2020M670864)+2 种基金Youth Support Project of Jilin Association for Science and Technology(202028)Jilin Provincial Health Special Project(2020SCZT039)Jilin Health and Healthy Youth Science and Technology Training Plan(2020Q017).
文摘Background:Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis.Although primary prevention drugs,including non-selectiveβ-blockers,have effectively reduced the incidence of bleeding,their efficacy is limited due to side effects and related contraindications.With recent advances in precision medicine,precise drug treatment provides better treatment efficacy.Data sources:Literature search was conducted in PubMed,MEDLINE and Web of Science for relevant articles published up to May 2022.Information on clinical trials was obtained from https://clinicaltrials.gov/and http://www.chictr.org.cn/.Results:The in-depth understanding of the pathogenesis and advances of portal hypertension has enabled the discovery of multiple molecular targets for promising drugs.According to the site of action,these drugs could be classified into four classes:intrahepatic,extrahepatic,both intrahepatic and extrahepatic targets and others.All these classes of drugs offer advantages over traditional treatments in prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.Conclusions:This review classified and summarized the promising drugs,which prevent gastroesophageal variceal bleeding by targeting specific markers of pathogenesis of portal hypertension,demonstrating the significance of using the precision medicine strategy to discover and develop promising drugs for the primary prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.
文摘Pancreatic cancer is highly aggressive and lethal.Due to the lack of effective methods for detecting the disease at an early stage,pancreatic cancer is frequently diagnosed late.Gemcitabine has been the standard chemotherapy drug for patients with pancreatic cancer for over 20 years,but its anti-tumor effect is limited.Therefore,FOLFIRINOX(leucovorin,fluorouracil,irinotecan,oxaliplatin)as well as combination therapies using gemcitabine and conventional agents,such as cisplatin and capecitabine,has also been administered;however,these have not resulted in complete remission.Therefore,there is a need to develop novel and effective therapies for pancreatic cancer.Recently,some studies have reported that combinations of gemcitabine and targeted drugs have had significant antitumor effects on pancreatic cancer cells.As gemcitabine induced DNA damage response,the proteins related to DNA damage response can be suitable additional targets for novel gemcitabine-based combination therapy.Furthermore,KRAS/RAF/MEK/ERK signaling triggered by oncogenic mutated KRAS and autophagy are frequently activated in pancreatic cancer.Therefore,these characteristics of pancreatic cancer are potential targets for developing effective novel therapies.In this minireview,combinations of gemcitabine and targeted drugs to these characteristics,combinations of targeted drugs,combinations of natural products and anti-cancer agents,including gemcitabine,and combinations among natural products are discussed.
文摘In the last few decades numbers of review and research articles have been published on niosomes. This shows the relevant interest of academias & researchers in niosomes because of the advantages sponsored by them over other colloidal drug delivery systems. Niosomes formation occurs when non-ionic surfactant vesicles assemble themselves. Various antineoplastic agents are used in chemotherapy, but they have some drawbacks that these agents cause cell death in normal tissues as well. There are two approaches to overcome this limitation. First, to modify the structure of existing drugs, but this will not possible because it changes the properties of drugs. Second, the development of nano-carriers like liposomes, dendrimers, nanoparticles, niosomes et al. Among all, niosomes (non-ionic surfactant vesicles) have more advantages besides all nano-carriers. Drugs either hydrophilic in nature or hydrophobic in nature, both can be incorporated in niosomes. And by embedding specific ligands over vesicular surface enables us to target the drug to specific cancer cells.
基金supported by an internal fund from Macao Polytechnic University(RP/FCSD-02/2022).
文摘Objective:Chronic fatigue syndrome(CFS)is a prevalent symptom of post-coronavirus disease 2019(COVID-19)and is associated with unclear disease mechanisms.The herbal medicine Qingjin Yiqi granules(QJYQ)constitute a clinically approved formula for treating post-COVID-19;however,its potential as a drug target for treating CFS remains largely unknown.This study aimed to identify novel causal factors for CFS and elucidate the potential targets and pharmacological mechanisms of action of QJYQ in treating CFS.Methods:This prospective cohort analysis included 4,212 adults aged≥65 years who were followed up for 7 years with 435 incident CFS cases.Causal modeling and multivariate logistic regression analysis were performed to identify the potential causal determinants of CFS.A proteome-wide,two-sample Mendelian randomization(MR)analysis was employed to explore the proteins associated with the identified causal factors of CFS,which may serve as potential drug targets.Furthermore,we performed a virtual screening analysis to assess the binding affinity between the bioactive compounds in QJYQ and CFS-associated proteins.Results:Among 4,212 participants(47.5%men)with a median age of 69 years(interquartile range:69–70 years)enrolled in 2004,435 developed CFS by 2011.Causal graph analysis with multivariate logistic regression identified frequent cough(odds ratio:1.74,95%confidence interval[CI]:1.15–2.63)and insomnia(odds ratio:2.59,95%CI:1.77–3.79)as novel causal factors of CFS.Proteome-wide MR analysis revealed that the upregulation of endothelial cell-selective adhesion molecule(ESAM)was causally linked to both chronic cough(odds ratio:1.019,95%CI:1.012–1.026,P=2.75 e^(−05))and insomnia(odds ratio:1.015,95%CI:1.008–1.022,P=4.40 e^(−08))in CFS.The major bioactive compounds of QJYQ,ginsenoside Rb2(docking score:−6.03)and RG4(docking score:−6.15),bound to ESAM with high affinity based on virtual screening.Conclusions:Our integrated analytical framework combining epidemiological,genetic,and in silico data provides a novel strategy for elucidating complex disease mechanisms,such as CFS,and informing models of action of traditional Chinese medicines,such as QJYQ.Further validation in animal models is warranted to confirm the potential pharmacological effects of QJYQ on ESAM and as a treatment for CFS.
文摘Background:Andrographis paniculata has been widely reported as an herbal plant for malaria treatment.The increasing rate of resistance to recommended antimalarial drugs has justified the need for a continuous search for new and more potent drugs that target all stages of the Plasmodium falciparum life cycle from natural plant sources.This study aimed to determine the antiplasmodial effect of phytocompounds derived from A.paniculata on the stages of plasmodium falciparum.Methods:Phytocompounds from A.paniculata were identified by Gas Chromatography-Mass Spectrophotometry(GCMS)analysis.The phytocompounds were screened for their druggability using Lipinski’s rule of five and subjected to Absorption,Distribution,Metabolism,Excretion,Toxicity(ADMET)and druglikeness analysis.The phytocompounds were docked against some validated drug targets at different stages of Plasmodium falciparum(hepatic,asexual,sexual,and vector targets)using PyRx software to analyze the inhibitory potential and protein-ligand interaction.Thereafter,the stability and flexibility of the best complexes were assessed through molecular dynamics simulations at 50ns using WebGRO.Result:The 7a-Isopropenyl-4,5-dimethyloctahydroinden-4-yl exhibited a higher binding affinity and better stability throughout the simulation period with P.falciparum dihydrofolate reductase-thymidylate synthase and Plasmodium falciparum M1 alanyl aminopeptidase for asexual blood stage and gametocyte stage of Plasmodium falciparum,respectively than the existing drugs.Meanwhile,N-Ethyl-3-methoxy-4-methylphenethylamine was also found to have a higher binding affinity and more stability throughout the simulation period with P.falciparum purine nucleoside phosphorylase and Plasmodium falciparum gametocyte surface protein for Hepatic schizonts stage of Plasmodium falciparum and gametocyte transmission blocking stage,respectively,than the existing drugs.Conclusion:The 7a-Isopropenyl-4,5-dimethyloctahydroinden-4-yl and N-Ethyl-3-methoxy-4 methylphenethylamine from A.paniculata are predicted as an antimalarial drug candidate.Thus,it is recommended that in vitro and in vivo bioassays be conducted on these hit compounds to validate these predictions.
文摘The distribution of  ̄(3)H-mitoxantrone polybutyl cyanoacrylate nanospheres( ̄(3)H-DHAQ-PBCA-NS)in the viscera,muscle and tumors of human hepatocellular carcinoma (HCC)model in nude mice was studied with liquid scintillation counting techniique. The results showed that the  ̄(3)H-DHAQ-PBCA-NS had remarkable liver targeting effect. The content of  ̄(3)H-DHAQ-PBCA-NSin liver and heterotopic liver tumor was found to be 71.31±10. 49% of total amount of drug in animal body. It was also found that the content of  ̄(3)H-DHAQ-PBCA-NS in liver was higher than that in liver tissue, and the content of  ̄(3)H-DHAQ-PBCA-NS in annpit tumor was higher than that in armpit muscle tissue,but had no significant difference;It provides an ideal preparation for the DHAQ admini-stration.
文摘By analyzing the observed phenomena and the data collected in the study, a multi-compartment linear circulation model for targeting drug delivery system was developed and the function formulas of the drug concentration-time in blood and target organ by computing were figured out. The drug concentration-time curve for target organ can be plotted with reference to the data of drug concentration in blood according to the model. The pharmacokinetic parameters of the drug in target organ could also be obtained. The practicability of the model was further checked by the curves of drug concentration-time in blood and target organ(liver) of liver-targeting nanoparticles in animal tests. Based on the liver drug concentration-time curves calculated by the function formula of the drug in target organ, the pharmacokinetic behavior of the drug in target organ(liver) was analyzed by statistical moment, and its pharmacokinetic parameters in liver were obtained. It is suggested that the (relative targeting index( can be used for quantitative evaluation of the targeting drug delivery systems.
文摘Ultrasonic imaging is becoming the most popular medical imaging modality,owing to the low price per examination and its safety.However,blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies.For perfusion imaging,markers have been designed to enhance the contrast in B-mode imaging.These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells.In this review,the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described.Furthermore,an outline of clinical imaging applications of contrast-enhanced ultrasound is given.It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition,and how these phenomena may be utilized in ultrasonic imaging.Aided by high-speed photography,our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques.More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves,and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs.These are beginning to be accepted into clinical practice.In the long term,targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110071130011)the National Science and Technology Major Project (No. 2012ZX09304004)
文摘The lymphatic system has an important defensive role in the human body. The metastasis of most tumors initially spreads through the surrounding lymphatic tissue and eventually forms lymphatic metastatic tumors; the tumor cells may even transfer to other organs to form other types of tumors. Clinically, lymphatic metastatic tumors develop rapidly. Given the limitations of surgical resection and the low effectiveness of radiotherapy and chemotherapy, the treatment of lymphatic metastatic tumors remains a great challenge. Lymph node metastasis may lead to the further spread of tumors and may be predictive of the endpoint event. Under these circumstances, novel and effective lymphatic targeted drug delivery systems have been explored to improve the specificity of anticancer drugs to tumor cells in lymph nodes. In this review, we summarize the principles of lymphatic targeted drug delivery and discuss recent advances in the development of lymphatic targeted carriers.
基金supported by the National Natural Science Foundation of China(No.81974210)the Science and Technology Planning Project of Guangdong Province,China(No.2020A0505100045)the Natural Science Foundation of Guangdong Province(No.2019A1515010671),all to CKT.
文摘Injuries to the central nervous system(CNS)such as stroke,brain,and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration.The brain has a surprising intrinsic capability of recovering itself after injury.However,the hostile extrinsic microenvironment significantly hinders axon regeneration.Recent advances have indicated that the inactivation of intrinsic regenerative pathways plays a pivotal role in the failure of most adult CNS neuronal regeneration.Particularly,substantial evidence has convincingly demonstrated that the mechanistic target of rapamycin(mTOR)signaling is one of the most crucial intrinsic regenerative pathways that drive axonal regeneration and sprouting in various CNS injuries.In this review,we will discuss the recent findings and highlight the critical roles of mTOR pathway in axon regeneration in different types of CNS injury.Importantly,we will demonstrate that the reactivation of this regenerative pathway can be achieved by blocking the key mTOR signaling components such as phosphatase and tensin homolog(PTEN).Given that multiple mTOR signaling components are endogenous inhibitory factors of this pathway,we will discuss the promising potential of RNA-based therapeutics which are particularly suitable for this purpose,and the fact that they have attracted substantial attention recently after the success of coronavirus disease 2019 vaccination.To specifically tackle the blood-brain barrier issue,we will review the current technology to deliver these RNA therapeutics into the brain with a focus on nanoparticle technology.We will propose the clinical application of these RNA-mediated therapies in combination with the brain-targeted drug delivery approach against mTOR signaling components as an effective and feasible therapeutic strategy aiming to enhance axonal regeneration for functional recovery after CNS injury.
文摘L-type amino acid transporters(LATs) mainly assist the uptake of neutral amino acids into cells. Four LATs(LAT1, LAT2, LAT3 and LAT4) have so far been identified. LAT1(SLC7A5) has been attracting much attention in the field of cancer research since it is commonly up-regulated in various cancers. Basic research has made it increasingly clear that LAT1 plays a predominant role in malignancy. The functional significance of LAT1 in cancer and the potential therapeutic application of the features of LAT1 to cancer management are described in this review.
基金supported by the Deputy Research and Technology, Ardabil University of Medical Sciences。
文摘Drug resistance is a great challenge in cancer therapy using chemotherapeutic agents. Administration of these drugs with siRNA is an efficacious strategy in this battle. Here, the present study tried to incorporate siRNA and paclitaxel(PTX) simultaneously into a novel nanocarrier. The selectivity of carrier to target cancer tissues was optimized through conjugation of folic acid(FA) and glucose(Glu) onto its surface. The structure of nanocarrier was formed from ternary magnetic copolymers based on FeCopolyethyleneimine(FeCo-PEI) nanoparticles and polylactic acid-polyethylene glycol(PLA-PEG) gene delivery system. Biocompatibility of FeCo-PEI-PLA-PEG-FA(NPsA), FeCo-PEI-PLA-PEG-Glu(NPsB) and FeCo-PEI-PLA-PEG-FA/Glu(NPsAB) nanoparticles and also influence of PTX-loaded nanoparticles on in vitro cytotoxicity were examined using MTT assay. Besides, siRNA-FAM internalization was investigated by fluorescence microscopy. The results showed the blank nanoparticles were significantly less cytotoxic at various concentrations. Meanwhile, siRNA-FAM/PTX encapsulated nanoparticles exhibited significant anticancer activity against MCF-7 and BT-474 cell lines. NPsAB/siRNA/PTX nanoparticles showed greater effects on MCF-7 and BT-474 cells viability than NPsA/siRNA/PTX and NPsB/siRNA/PTX.Also, they induced significantly higher anticancer effects on cancer cells compared with NPsA/siRNA/PTX and NPsB/siRNA/PTX due to their multi-targeted properties using FA and Glu. We concluded that NPsAB nanoparticles have a great potential for co-delivery of both drugs and genes for use in gene therapy and chemotherapy.
基金Supported by the National Natural Science Foundation of China(No.81371667,No.31271073)
文摘In recent years, organic-inorganic hybrid nanocarriers are explored for effective drug delivery and preferable disease treatments. In this study, using 5-fluorouracil(5-FU)as electronegative model drug, a new type of organic-inorganic hybrid drug delivery system(LDH/HA-PEG/5-FU)was conceived and manufactured by the adsorption of PEGylated hyaluronic acid(HA-PEG)on the surface of layered double hydroxide(LDH, prepared via hydrothermal method)and the intercalation of 5-FU in the interlamination of LDH via ion exchange strategy. The drug loading amount of LDH/HA-PEG/5-FU achieved as high as 34.2%. LDH, LDH/5-FU and LDH/HA-PEG/5-FU were characterized by FT-IR, XRD, TGA, laser particle size analyzer and SEM. With the benefit of p Hdegradable feature of LDH and enzyme-degradable feature of HA, LDH/HA-PEG/5-FU showed p H-degradable and enzyme-degradable capacity in in vitro drug release. Moreover, the drug carrier LDH/HA-PEG contained biocompatible PEG and tumor-targeted HA, resulting in lower cytotoxicity and better endocytosis compared with LDH in vitro. It was suggested that the organic-inorganic hybrid drug delivery system, which was endowed with the properties of controlled release, low toxicity and tumor-targeting delivery for ameliorative cancer therapy, was advisable and might be applied further to fulfill other treatments.
基金This work was funded by Japan Science and Technology Agency(JST)ERATO Grant JPMJER1802 and a Grant-in-Aid for Scientific Research on Innovative Areas“Chemistry for Multimolecular Crowding Biosystems”(17H06348).
文摘Fluorescence imaging can provide valuable information on the expression,distribution,and activity of drug target proteins.Chemical probes are useful small-molecule tools for fluorescence imaging with high structural flexibility and biocompatibility.In this review,we briefly introduce two classes of fluorescent probes for the visualization of drug target proteins.Enzymatically activatable probes make use of the specific enzymatic transformations that generally produce a fluorogenic response upon reacting with target enzymes.Alternatively,specific imaging can be conferred with a ligand that drives the probes to target proteins,where the labeling relies on noncovalent binding,covalent inhibition,or traceless labeling by ligand-directed chemistry.
基金Funded by the National Natural Science Foundation of China(No.50973088)
文摘Nanoparticles conjugated with antibody were designed as active drug delivery system to reduce the toxicity and side effects of drugs for acute myeloid leukemia(AML).Moreover,methotrexate(MTX)was chosen as modeldrug and encapsulate within folic acid modified carboxymethylchitosan(FACMCS)nanoparticles through self-assembling.The chemicalstructure,morphology,release and targeting of nanoparticles were characterized by routine detection.It is demonstrated that the mean diameter is about 150 nm,the release rate increases with the decreasing of p H,the binding rate of CD33 antibody and FA-CMCS nanoparticles is about 5:2,and nanoparticles can effectively bind onto HL60 cells in vitro.The experimentalresults indicate that the FA-CMCS nanoparticles conjugated with antibody may be used as a potentialp Hsensitive drug delivery system with leukemic targeting properties.
基金supported by National Natural Science Foundation of China (Grant No. 50875169)National Basic Research Program of China (973 Program, Grant No. 2007CB936004).
文摘Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging confirms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application.
基金the National Basic Research Program of China(973 Program)(No.2007CB936004)the National Natural Science Foundation of China(No.50875169)
文摘Among the proposed techniques for delivering drugs to specific locations within human body, magnetic drug targeting prevails due to its non-invasive character and its high targeting efficiency. Magnetic targeting drug delivery is a method of carrying drug-loaded magnetic nanoparticles to a target tissue target under the applied magnetic field. This method increases the drug concentration in the target while reducing the adverse side-effects. Although there have been some theoretical analyses for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel. A mathematical model is presented to describe the hydrodynamics of ferrofiuids as drug carriers flowing in a blood vessel under the applied magnetic field. In this model, magnetic force and asymmetrical force are added, and an angular momentum equation of magnetic nanoparticles in the applied magnetic field is modeled. Engineering approximations are achieved by retaining the physically most significant items in the model due to the mathematical complexity of the motion equations. Numerical simulations are performed to obtain better insight into the theoretical model with computational fluid dynamics. Simulation results demonstrate the important parameters leading to adequate drug delivery to the target site depending on the magnetic field intensity, which coincident with those of animal experiments. Results of the analysis provide important information and suggest strategies for improving delivery in clinical application.
基金the research grant of Jeju National University in 2020,the Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(Ministry of Science and ICT)(NRF-2018R1A4A1025998)Higher Education Commission of Pakistan(Project No.210-3800/NRPU/R&D/HEC/1530).
文摘In recent years,the emergence of nanotechnology experienced incredible development in the field of medical sciences.During the past decade,investigating the characteristics of nanoparticles during fluid flow has been one of the intriguing issues.Nanoparticle distribution and uniformity have emerged as substantial criteria in both medical and engineering applications.Adverse effects of chemotherapy on healthy tissues are known to be a significant concern during cancer therapy.A novel treatment method of magnetic drug targeting(MDT)has emerged as a promising topical cancer treatment along with some attractive advantages of improving efficacy,fewer side effects,and reduce drug dose.During magnetic drug targeting,the appropriate movement of nanoparticles(magnetic)as carriers is essential for the therapeutic process in the blood clot removal,infection treatment,and tumor cell treatment.In this study,we have numerically investigated the behavior of an unsteady blood flowinfused with magnetic nanoparticles during MDT under the influence of a uniform external magnetic field in a microtube.An optimal homotopy asymptotic method(OHAM)is employed to compute the governing equation for unsteady electromagnetohydrodynamics flow.The influence of Hartmann number(Ha),particle mass parameter(G),particle concentration parameter(R),and electro-osmotic parameter(k)is investigated on the velocity of magnetic nanoparticles and blood flow.Results obtained show that the electro-osmotic parameter,along with Hartmann’s number,dramatically affects the velocity of magnetic nanoparticles,blood flow velocity,and flow rate.Moreover,results also reveal that at a higher Hartman number,homogeneity in nanoparticles distribution improved considerably.The particle concentration andmass parameters effectively influence the capturing effect on nanoparticles in the blood flow using a micro-tube for magnetic drug targeting.Lastly,investigation also indicates that the OHAM analysis is efficient and quick to handle the system of nonlinear equations.