期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Osteopontin promotes gastric cancer progression via phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway
1
作者 Yue-Chao Qin Xin Yan +2 位作者 Xiao-Lin Yuan Wei-Wei Yu Fan-Jie Qu 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第9期1544-1555,共12页
BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect... BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC. 展开更多
关键词 OSTEOPONTIN Proliferation INVASION Migration Gastric cancer Phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway
下载PDF
Uncovering the potential targets of Viburnum odoratissimum for the treatment of related diseases
2
作者 Xiaobian Xue Guodong Yao 《Asian Journal of Traditional Medicines》 CAS 2020年第6期328-359,共32页
Viburnum odoratissimum,a landscape plant,is rich in vibsane-type diterpenes,triterpenes,monoterpenoids,sesquiterpenoids,coumarins,and lignans and so on.In the present work,network analysis was carried out to predict t... Viburnum odoratissimum,a landscape plant,is rich in vibsane-type diterpenes,triterpenes,monoterpenoids,sesquiterpenoids,coumarins,and lignans and so on.In the present work,network analysis was carried out to predict the potential targets of V.odoratissimum and the treatment of related diseases.13 main target proteins were predicted,as well as the diseases which might interact with the compounds from V.odoratissimum.The results showed that vibsane-type diterpenes and triterpenes had the potential to treat neoplasm-related and inflammation-related diseases,and the key target proteins were MDM2,NOS,AR,DNMT1,NR3C1,RARA and PTPN1.Among them,AR,NOS,DNMT1,NR3C1,DNMT1 and PTPN1 were also the crucial targets for triterpenes in the treatment of diabetes mellitus.Besides,ALOX15,PIPN1,TLR9,MIT,DNMT1,RAC1,RTGS2,RARA and ACHE were the potential targets for coumarins and lignan in the treatment of neoplasm-related diseases.Furthermore,ESR1,AR,NOS2,NR3C1 were the primary targets for monoterpenoids and sesquiterpenoids because of their potential neuroprotective effects.It is noteworthy that the study of the potential targets and related diseases can provide new insights for further development of V.odoratissimum. 展开更多
关键词 Viburnum odoratissimum target proteins NETWORK DISEASES
下载PDF
Xihuang pills induce apoptosis in hepatocellular carcinoma by suppressing phosphoinositide 3-kinase/protein kinase- B/mechanistic target of rapamycin pathway 被引量:1
3
作者 Yong-Jie Teng Zhe Deng +14 位作者 Zhao-Guang Ouyang Qing Zhou Si Mei Xing-Xing Fan Yong-Rong Wu Hong-Ping Long Le-Yao Fang Dong-Liang Yin Bo-Yu Zhang Yin-Mei Guo Wen-Hao Zhu Zhen Huang Piao Zheng Di-Min Ning Xue-Fei Tian 《World Journal of Gastrointestinal Oncology》 SCIE 2022年第4期872-886,共15页
BACKGROUND The phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin(PI3K/Akt/mTOR) signalling pathway is crucial for cell survival, differentiation, apoptosis and metabolism. Xihuang pills(XHP) a... BACKGROUND The phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin(PI3K/Akt/mTOR) signalling pathway is crucial for cell survival, differentiation, apoptosis and metabolism. Xihuang pills(XHP) are a traditional Chinese preparation with antitumour properties. They inhibit the growth of breast cancer, glioma, and other tumours by regulating the PI3K/Akt/mTOR signalling pathway. However, the effects and mechanisms of action of XHP in hepatocellular carcinoma(HCC) remain unclear. Regulation of the PI3K/Akt/mTOR signalling pathway effectively inhibits the progression of HCC. However, no study has focused on the XHPassociated PI3K/Akt/mTOR signalling pathway. Therefore, we hypothesized that XHP might play a role in inhibiting HCC through the PI3K/Akt/mTOR signalling pathway.AIM To confirm the effect of XHP on HCC and the possible mechanisms involved.METHODS The chemical constituents and active components of XHP were analysed using ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry(UPLC-Q-TOF-MS). Cellbased experiments and in vivo xenograft tumour experiments were utilized to evaluate the effect of XHP on HCC tumorigenesis. First, SMMC-7721 cells were incubated with different concentrations of XHP(0, 0.3125, 0.625, 1.25, and 2.5 mg/mL) for 12 h, 24 h and 48 h. Cell viability was assessed using the CCK-8 assay, followed by an assessment of cell migration using a wound healing assay.Second, the effect of XHP on the apoptosis of SMMC-7721 cells was evaluated. SMMC-7721 cells were stained with fluorescein isothiocyanate and annexin V/propidium iodide. The number of apoptotic cells and cell cycle distribution were measured using flow cytometry. The cleaved protein and mRNA expression levels of caspase-3 and caspase-9 were detected using Western blotting and quantitative reverse-transcription polymerase chain reaction(RT-qPCR), respectively.Third, Western blotting and RT–qPCR were performed to confirm the effects of XHP on the protein and mRNA expression of components of the PI3K/Akt/mTOR signalling pathway.Finally, the effects of XHP on the tumorigenesis of subcutaneous hepatocellular tumours in nude mice were assessed.RESULTS The following 12 compounds were identified in XHP using high-resolution mass spectrometry:Valine, 4-gingerol, myrrhone, ricinoleic acid, glycocholic acid, curzerenone, 11-keto-β-boswellic acid, oleic acid, germacrone, 3-acetyl-9,11-dehydro-β-boswellic acid, 5β-androstane-3,17-dione, and 3-acetyl-11-keto-β-boswellic acid. The cell viability assay results showed that treatment with 0.625mg/mL XHP extract decreased HCC cell viability after 12 h, and the effects were dose-and timedependent. The results of the cell scratch assay showed that the migration of HCC cells was significantly inhibited in a time-dependent manner by the administration of XHP extract(0.625mg/mL). Moreover, XHP significantly inhibited cell migration and resulted in cell cycle arrest and apoptosis. Furthermore, XHP downregulated the PI3K/Akt/mTOR signalling pathway, which activated apoptosis executioner proteins(e.g., caspase-9 and caspase-3). The inhibitory effects of XHP on HCC cell growth were determined in vivo by analysing the tumour xenograft volumes and weights.CONCLUSION XHP inhibited HCC cell growth and migration by stimulating apoptosis via the downregulation of the PI3K/Akt/mTOR signalling pathway, followed by the activation of caspase-9 and caspase-3.Our findings clarified that the antitumour effects of XHP on HCC cells are mediated by the PI3K/Akt/mTOR signalling pathway, revealing that XHP may be a potential complementary therapy for HCC. 展开更多
关键词 Hepatocellular carcinoma Xihuang pills Apoptosis ANTITUMOUR Phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin pathway
下载PDF
Targeting amyloid precursor protein shuttling and processing-long before amyloid beta formation
4
作者 Sage Arbor 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期207-209,共3页
Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation... Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation(e.g.,Parkinson’s disease:α-synuclein;Huntington’s disease:Huntingtin; 展开更多
关键词 AICD targeting amyloid precursor protein shuttling and processing-long before amyloid beta formation APP ADAM
下载PDF
Bone morphogenetic protein signaling:a promising target for white matter protection in perinatal brain injury
5
作者 Jill Chang Robert W.Dettman Maria L.V.Dizon 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第7期1183-1184,共2页
Prematurely born newborns,as well as those born at term,may suffer from several types of brain injury including hypoxic-ischemic injury,intracranial hemorrhage,both intraventricular and parenchymal,and injury that is ... Prematurely born newborns,as well as those born at term,may suffer from several types of brain injury including hypoxic-ischemic injury,intracranial hemorrhage,both intraventricular and parenchymal,and injury that is the consequence of intrauterine growth restriction(IUGR).Injury of all types can impact the motor and cognitive abilities of survivors.The mechanisms leading to disability are not completely understood. 展开更多
关键词 In Bone morphogenetic protein signaling:a promising target for white matter protection in perinatal brain injury
下载PDF
Targeted Degradation of DNA/RNA Binding Proteins via Covalent Hydrophobic Tagging
6
作者 Yan Wang Jingzi Zhang +4 位作者 Jiafang Deng Chengzhi Wang Lei Fang Yan Zhang Jinbo Li 《CCS Chemistry》 CSCD 2023年第10期2207-2214,共8页
Targeted protein degradation(TPD)holds great promise for biological inquiry and therapeutic development.However,it still remains elusive to destruct DNA/RNA binding proteins(DBPs/RBPs)previously deemed undruggable.Her... Targeted protein degradation(TPD)holds great promise for biological inquiry and therapeutic development.However,it still remains elusive to destruct DNA/RNA binding proteins(DBPs/RBPs)previously deemed undruggable.Herein,we report ligandassisted covalent hydrophobic tagging(LACHT)as a modular strategy for TPD of these difficult-totarget proteins.Guided by a noncovalent protein ligand,LACHT leverages a reactive N-acyl-N-alkyl sulfonamide group to covalently label the protein target with a hydrophobic adamantane,which further engages the cellular quality control mechanism to induce proteolytic degradation.Using a smallmolecule ligand,we demonstrated that LACHT allowed TPD of a DBP,bromodomain-containing protein 4,in human leukemia cells with high efficiency.Mechanistic studies revealed that LACHT-mediated TPD dependent on ligand-directed irreversible tagging and the covalently labeled proteins underwent polyubiquitination before removal through both the proteasome and the lysosome.Furthermore,when an RNA ligand was employed,we showed that LACHT also enabled TPD of an RBP,Lin28a,leading to upregulation of its downstream let-7 miRNA.This study thus provides a generalizable platform to expand the TPD toolbox for biomedical applications. 展开更多
关键词 targeted protein degradation covalent labeling hydrophobic tagging DNA/RNA binding proteins miRNA
原文传递
Artificial Nucleic Acid Tractor-Directed Simultaneous Depletion of Oncogenic Membrane Proteins Without Hijacking Proteolysis-Specific Actuator
7
作者 Zhen Zou Songlan Pan +8 位作者 Qian Xue Ting Chen Ziyun Huang Bei Qing Pengfei Liu Conghui Zhao Yunlin Sun Erhu Xiong Ronghua Yang 《CCS Chemistry》 CSCD 2024年第2期439-449,共11页
Targeted protein degradation(TPD)is an emerging tool for degrading proteins of interest,which affords an attractive modality for cancer therapy.However,the present TPD technologies must engage a proteolysis-specific a... Targeted protein degradation(TPD)is an emerging tool for degrading proteins of interest,which affords an attractive modality for cancer therapy.However,the present TPD technologies must engage a proteolysis-specific actuator to initiate degradation of targeted proteins in the proteasome or lysosome.Herein,we report an artificial tractor that can induce endocytosis-mediated protein depletion without hijacking a proteolysis-specific actuator.In this design,bispecific aptamer chimeras(BSACs)are established,which can bridge human epidermal growth factor receptor 2(ErbB-2),an important biomarker in a common important biomarker in cancer,with membrane proteins of interest.Taking advantage of the property of aptamer-induced endocytosis and digestion of ErbB-2,another membrane protein is translocated into the lysosome in a hitchhike-like manner,resulting in lysosomal proteolysis along with ErbB-2.This strategy frees the TPD from the fundamental limitation of proteolysis-specific actuator and allows simultaneous regulation of the quantity and function of two oncogenic receptors in a cell-type-specific manner,expanding the application scope of TPD-based therapeutics. 展开更多
关键词 targeted protein degradation APTAMER epidermal growth factor receptor 2 LYSOSOME membrane proteins cancer therapy
原文传递
TPX2 knockdown suppressed hepatocellular carcinoma cell invasion via inactivating AKT signaling and inhibiting MMP2 and MMP9 expression 被引量:11
8
作者 Qingquan Liu Pinghua Yang +4 位作者 Kangsheng Tu Hongyong Zhang Xin Zheng Yingmin Yao Qingguang Liu 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2014年第4期410-417,共8页
Objective: Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a nuclear proliferation-related protein that plays a critical role in the formation of mitotic spindle. High expression of TPX2 has been obs... Objective: Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a nuclear proliferation-related protein that plays a critical role in the formation of mitotic spindle. High expression of TPX2 has been observed in several types of tumors. However, the role of TPX2 in hepatocellular carcinoma (HCC) remains unclear. Our study aimed to investigate the effect of TPX2 on HCC cell invasion. Methods: The immortalized normal human liver cell line L02 and six HCC cell lines including SMMC- 7721, BEL-7402, Huh-7, HepG2, Hep3B and SKHepl were subjected to qRT-PCR and western blot for TPX2 mRNA and protein, respectively. Furthermore, TPX2 small interfering RNA (siRNA) was used to knock down TPX2 expression in SMMC-7721 and HepG2 cells. Cell proliferation and invasion were determined by MTT and transwell assays. Otherwise, expression of p-AKT, MMP2 and MMP9 were evaluated by western blot in SMMC-7721 cells. Results: The expression of TPX2 in HCC cell lines was markedly higher than that in normal human liver cell line. TPX2 knockdown using a specific TPX2-siP, NA reduced the number of invaded cells and inhibited cell proliferation in SMMC-7721 and HepG2 cells. Furthermore, TPX2 knockdown resulted in inactivation of AKT signaling and down-regulation of MMP2 and MMP9 expression in SMMC-7721 cells. Conclusions: Our study identified that TPX2 might contribute to tumor cell invasion through activating AKT signaling and subsequently increasing MMP2 and MMP9 in HCC. 展开更多
关键词 targeting protein for Xenopus kinesin-like protein 2 (TPX2) hepatocellular carcinoma MMP2 MMP9
下载PDF
Effect of You-Gui Yin on glucocorticoid-induced apoptosis of bone marrow mesenchymal stem cells
9
作者 Hao Chen Peng Yuan +4 位作者 Hao Sun Fei-Fei Gao Yang Chen Xin Liu Bin Du 《Journal of Hainan Medical University》 2021年第24期11-16,共6页
Objective:To investigate the effect of You-Gui Yin on glucocorticoid-induced apoptosis of rat bone marrow mesenchymal stem cells and its possible mechanism.Methods:20 SD rats were divided into normal saline group and ... Objective:To investigate the effect of You-Gui Yin on glucocorticoid-induced apoptosis of rat bone marrow mesenchymal stem cells and its possible mechanism.Methods:20 SD rats were divided into normal saline group and You-Gui Yin group.Ten rats in each group were given normal saline and You-Gui Yin by gavage for 2 weeks,once daily.After the gavage,the rats were sacrificed by spinal removal,blood was taken from the abdominal aorta and centrifuged to obtain blank serum and medicated serum.The rat bone marrow mesenchymal stem cells were extracted and cultured and administered in groups:blank group(10%blank serum),Model group(10%blank serum+dexamethasone 5×10-5mol/ml),traditional Chinese medicine group(10%medicated serum+dexamethasone 5×10-5mol/ml),control group(10%medicated serum),CCK-8 method was used to detect cell proliferation changes in different groups,ELISA method was used to detect bone alkaline phosphatase levels in each group,Alizarin red staining was used to compare red-stained calcium mineralized nodules in each group,Western Blot Detect the expression of apoptosis-related proteins in BMSCs,and perform molecular docking of the quantitative components to evaluate the binding strength and activity of the target and the active compound.Results:The ratio of absorbance(A450)in each time period of the model group was significantly reduced(P<0.05),and the ratio of absorbance(A450)between the traditional Chinese medicine group and the control group was significantly higher than that of the model group(P<0.05).There was no difference between the control group and the blank group(P>0.05);ELISA method showed that the ALP level of the model group was significantly lower than that of the blank group and the control group(P<0.05),the traditional Chinese medicine group significantly increased the ALP level(P<0.05),there was no significant difference between the control group and the blank group;Observation of the number of calcium mineralized nodules under alizarin red staining microscope suggests that the number of calcium mineralized nodules in the model group is significantly lower than that of each group,and there is no significant difference between the control group and the blank group.Both groups are higher than the model group and traditional Chinese medicine Group;Western Blot indicated that compared with the blank group,the expression levels of proapoptotic proteins Bax and Cleaved-casepase-3 in the model group were significantly increased(P<0.01),and the expression levels of anti-apoptotic protein Bcl-2 were decreased(P<0.01),on the contrary in the traditional Chinese medicine group,the expression of the control group did not change significantly compared with the blank group;the molecular docking results showed that You-Gui Yin mainly regulates the apoptosis of BMSCs through Epicatechin 5,7,3'-trimethyl ether,Delphinin,etc.promote bone formation.Conclusion:You-Gui Yin medicated serum can protect BMSCs from apoptosis induced by GCs and promote BMSCs proliferation and osteogenic differentiation by regulating Bax,Cleaved-caspase3,and Bcl-2. 展开更多
关键词 You-Gui Yin Bone marrow mesenchymal stem cells Apoptosis target protein Molecular docking
下载PDF
Current strategies for improving limitations of proteolysis targeting chimeras
10
作者 Chunlan Pu Shirui Wang +6 位作者 Lei Liu Zhonghui Feng Hongjia Zhang Qianyuan Gong Yueshan Sun Yuanbiao Guo Rui Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期144-156,共13页
Proteolysis targeting chimeras(PROTACs)are bifunctional degrader molecules via hijacking the ubiquitinproteasome system(UPS)to specifically eliminate targeted proteins.PROTACs have gained momentum as a new modality of... Proteolysis targeting chimeras(PROTACs)are bifunctional degrader molecules via hijacking the ubiquitinproteasome system(UPS)to specifically eliminate targeted proteins.PROTACs have gained momentum as a new modality of attractive technologies in the drug discovery landscape,since it allows to degrade disease-related proteins effectively.Although some PROTACs drugs reached the clinical research,they are still facing some bottlenecks and challenges that should not be neglected,such as poor oral bioavailability and potential toxic side effects.To overcome these limitations,herein,we provide an overview of recent strategies for improving the durability of PROTACs by enhancing cell permeability and reducing toxic side effects.Meanwhile,the impact of these strategies on improving oral bioavailability as well as their advantages and drawbacks will also be discussed.This review will give a useful reference toolbox for PROTACs design and further promote its clinical application. 展开更多
关键词 PROTACs targeted protein degradation Oral bioavailability Cell permeability Tumor targeting
原文传递
Regulatory Effects of Zuogui Pill on Apoptosis of Follicles in Rats Injured by 60Co-γRays Based on PI3K/Akt/m TOR Signaling Pathway
11
作者 Fenqin ZHAO Mingxia AN +4 位作者 Xiaonan DING Jieying LIU Yan ZHAO Zhihui XIE Shuping LI 《Medicinal Plant》 CAS 2022年第5期45-50,58,共7页
[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signal... [Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein. 展开更多
关键词 Radiation injury Premature ovarian failure(POF) Zuogui Pill Terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL) Phosphatidylinositol-3-kinases/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway B-cell lymphoma-2 Bcl-2-associated X protein
下载PDF
Gehua Jiejiu Dizhi decoction(葛花解酒涤脂汤)ameliorates alcoholic fatty liver in mice by regulating lipid and bile acid metabolism and with exertion of antioxidant stress based on 4DLabel-free quantitative proteomic study
12
作者 HAN Min YI Xu +3 位作者 YOU Shaowei WU Xueli WANG Shuoshi HE Diancheng 《Journal of Traditional Chinese Medicine》 SCIE CSCD 2024年第2期277-288,共12页
OBJECTIVE:To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction(葛花解酒涤脂汤,GJDD)on alcoholic fatty live disease(AFLD)by using proteomic methods.METHODS:The male C57BL/6J mouse were randomly... OBJECTIVE:To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction(葛花解酒涤脂汤,GJDD)on alcoholic fatty live disease(AFLD)by using proteomic methods.METHODS:The male C57BL/6J mouse were randomly divided into four groups:control group,model group,GJDD group and resveratrol group.After the AFLD model was successfully prepared by intragastric administration of alcohol once on the basis of the Lieber-DeCarli classical method,the GJDD group and resveratrol group were intragastrically administered with GJDD(4900 mg/kg)and resveratrol(400 mg/kg)respectively,once a day for 9 d.The fat deposition of liver tissue was observed and evaluated by oil red O(ORO)staining.4DLabel-free quantitative proteome method was used to determine and quantify the protein expression in liver tissue of each experimental group.The differentially expressed proteins were screened according to protein expression differential multiples,and then analyzed by Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment.Finally,expression validation of the differentially co-expressed proteins from control group,model group and GJDD group were verified by targeted proteomics quantification techniques.RESULTS:In semiquantitative analyses of ORO,all kinds of steatosis(ToS,MaS,and MiS)were evaluated higher in AFLD mice compared to those in GJDD or resveratroltreated mice.4DLabel-free proteomics analysis results showed that a total of 4513 proteins were identified,of which 3763 proteins were quantified and 946 differentially expressed proteins were screened.Compared with the control group,145 proteins were up-regulated and 148 proteins were down-regulated in the liver tissue of model group.In addition,compared with the model group,92 proteins were up-regulated and 135 proteins were downregulated in the liver tissue of the GJDD group.15 differentially co-expressed proteins were found between every two groups(model group vs control group,GJDD group vs model group and GJDD group vs control group),which were involved in many biological processes.Among them,11 differentially co-expressed key proteins(Aox3,H1-5,Fabp5,Ces3a,Nudt7,Serpinb1a,Fkbp11,Rpl22l1,Keg1,Acss2 and Slco1a1)were further identified by targeted proteomic quantitative technology and their expression patterns were consistent with the results of 4D label-free proteomic analysis.CONCLUSIONS:Our study provided proteomics-based evidence that GJDD alleviated AFLD by modulating liver protein expression,likely through the modulation of lipid metabolism,bile acid metabolism and with exertion of antioxidant stress. 展开更多
关键词 fatty liver ALCOHOLIC 4DLabel-free quantitative proteome targeted protein quantification Gehua Jiejiu Dizhi decoction
原文传递
Cellular and Molecular Requirements for Polar PIN Targeting and Transcytosis in Plants 被引量:5
13
作者 Jurgen Kleine-Vehn tukasz tangowski +3 位作者 Justyna Wisniewska Pankaj Dhonukshe Philip B Brewer Jiri Friml 《Molecular Plant》 SCIE CAS CSCD 北大核心 2008年第6期1056-1066,共11页
The polar, sub-cellular localization of PIN auxin efflux carriers determines the direction of intercellular auxin flow, thus defining the spatial aspect of auxin signalling. Dynamic, transcytosis-like relocalizations ... The polar, sub-cellular localization of PIN auxin efflux carriers determines the direction of intercellular auxin flow, thus defining the spatial aspect of auxin signalling. Dynamic, transcytosis-like relocalizations of PIN proteins occur in response to external and internal signals, integrating these signals into changes in auxin distribution. Here, we examine the cellular and molecular mechanisms of polar PIN delivery and transcytosis. The mechanisms of the ARF-GEF-dependent polar targeting and transcytosis are well conserved and show little variations among diverse Arabidopsis ecotypes consistent with their fundamental importance in regulating plant development. At the cellular level, we refine previous findings on the role of the actin cytoskeleton in apical and basal PIN targeting, and identify a previously unknown role for microtubules, specifically in basal targeting. PIN protein delivery to different sides of the cell is mediated by ARFdependent trafficking with a previously unknown complex level of distinct ARF-GEF vesicle trafficking regulators. Our data suggest that alternative recruitment of PIN proteins by these distinct pathways can account for cell type- and cargo-specific aspects of polar targeting, as well as for polarity changes in response to different signals. The resulting dynamic PIN positioning to different sides of cells defines a three-dimensional pattern of auxin fluxes within plant tissues. 展开更多
关键词 CYTOSKELETON polarity protein targeting.
原文传递
Chloroplast Proteins without Cleavable Transit Peptides: Rare Exceptions or a Major Constituent of the Chloroplast Proteome? 被引量:3
14
作者 Ute Armbruster Alexander Hertle Elina Makarenko Jessica Zuhlke Mathias Pribil Angela Dietzmann Ivo Schliebner Elena Aseeva Elena Fenino Michael Scharfenberg Christian Voigt Dario Leister 《Molecular Plant》 SCIE CAS CSCD 2009年第6期1325-1335,共11页
Most chloroplast proteins (cp proteins) are nucleus-encoded, synthesized on cytosolic ribosomes as precursor proteins containing a presequence (cTP), and post-translationally imported via the Tic/Toc complex into ... Most chloroplast proteins (cp proteins) are nucleus-encoded, synthesized on cytosolic ribosomes as precursor proteins containing a presequence (cTP), and post-translationally imported via the Tic/Toc complex into the organelle, where the cTP is removed. Only a few unambiguous instances of cp proteins that do not require cTPs (non-canonical cp proteins) have been reported so far. However, the survey of data from large-scale proteomic studies presented here suggests that the fraction of such proteins in the total cp proteome might be as large as -30%. To explore this discrepancy, we chose a representative set of 28 putative non-canonical cp proteins, and used in vitro import and Red Fluorescent Protein (RFP)-fusion assays to determine their sub-cellular destinations. Four proteins, including embryo defective 1211, glycolate oxidase 2, protein disulfide isomerase-like protein (PDII), and a putative glutathione S-transferase, could be unambiguously assigned to the chloroplast. Several others ('potential cp proteins') were found to be imported into chloroplasts in vitro, but failed to localize to the organelle when RFP was fused to their C-terminal ends. Extrapolations suggest that the fraction of cp proteins that enter the inner compartments of the organelle, although they lack a cTP, might be as large as 11.4% of the total cp proteome. Our data also support the idea that cytosolic proteins that associate with the cp outer membrane might account for false positive cp proteins obtained in earlier studies. 展开更多
关键词 Chloroplast biology MITOCHONDRIA organelle biogenesis/function protein targeting.
原文传递
In vivo Studies on the Roles of Tic55-Related Proteins in Chloroplast Protein Import in Arabidopsis thaliana 被引量:2
15
作者 Patrik Boij Ramesh Patel +2 位作者 Christel Garcia Paul Jarvis Henrik Aronsson 《Molecular Plant》 SCIE CAS CSCD 2009年第6期1397-1409,共13页
The TicS5 (Translocon at the inner envelope membrane of chloroplasts, 55 kDa) protein was identified in pea as a putative regulator, possibly linking chloroplast protein import to the redox state of the photosynthet... The TicS5 (Translocon at the inner envelope membrane of chloroplasts, 55 kDa) protein was identified in pea as a putative regulator, possibly linking chloroplast protein import to the redox state of the photosynthetic machinery. Two Tic55 homologs have been proposed to exist in Arabidopsis: atTic55-11 and AtPTC52 (Protochlorophyllide-dependent Trans- Iocon Component, 52 kDa; has also been called atTic55-1V). Our phylogenetic analysis shows that attic55-11 is an ortholog of psTic55 from pea (Pisum sativurn), and that AtPTC52 is a more distant homolog of the two. AtPTC52 was included in this study to rule out possible functional links between the proteins in Arabidopsis. No detectable mutant phenotypes were found in two independent T-DNA knockout mutant plant lines for each Arabidopsis protein, when compared with wild- type: visible appearance, chlorophyll content, photosynthetic performance, and chloroplast protein import, for example, were all normal. Both wild-type and tic55-11 mutant chloroplasts exhibited deficient protein import when treated with diethylpyrocarbonate, indicating that Tic55 is not the sole target of this reagent in relation to protein import. Furthermore, ptc52 mutant chloroplasts were not defective with respect to pPORA import, which was previously reported to involve PTC52 in barley. Thus, we conclude that atTic55-11 and AtPTC52 are not strictly required for functional protein import in Arabidopsis. 展开更多
关键词 ARABIDOPSIS CHLOROPLAST IMPORT protein targeting Tic55.
原文传递
TopoisomeraseⅡalpha promotes gallbladder cancer proliferation and metastasis through activating phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway 被引量:2
16
作者 Wen-Jie Lyu Yi-Jun Shu +1 位作者 Ying-Bin Liu Ping Dong 《Chinese Medical Journal》 SCIE CAS CSCD 2020年第19期2321-2329,共9页
Background:TopoisomeraseⅡalpha(TOP2A)has been reported to play a crucial role in the tumorigenesis of various cancer types.However,the biological role of TOP2A in gallbladder cancer(GBC)remains unknown.The current st... Background:TopoisomeraseⅡalpha(TOP2A)has been reported to play a crucial role in the tumorigenesis of various cancer types.However,the biological role of TOP2A in gallbladder cancer(GBC)remains unknown.The current study aimed to explore the function and potential mechanism of TOP2A in GBC.Methods:Based on Gene Expression Profiling Interactive Analysis data,we found TOP2A was significantly up-regulated in GBC tissues and resulting in shorter overall survival.Quantitative real-time polymerase chain reaction and immunohistochemistry were conducted to detect the expression of TOP2A in 45 pairs of GBC tissues and adjacent non-tumor tissues.In vitro,cell proliferation,migration,and invasion ability were examined by cell counting kit-8 and transwell assay,respectively.Epithelial-mesenchymal transition(EMT)related and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)pathway-related markers were measured by Western blotting.Xenograft model assay was performed to evaluate the effect of TOP2A in vivo.Results:TOP2A was found up-regulated in GBC(tumor vs.normal,12.62 vs.0.34)and correlated with the late tumor node metastasis stage(P=0.0032),present of lymph node metastasis(P=0.0273),and poor prognosis in GBC patients(log-rank P=0.028).In vitro and in vivo assays showed that knockdown of TOP2A notably inhibited cell proliferation,migration,invasion,EMT process,and tumor growth in GBC.In addition,TOP2A down-regulation significantly decreased the protein levels of phosphor(p)-PI3K,p-Akt,and p-mTOR.Conclusion:Our study demonstrates that TOP2A was overexpressed in GBC and associated with poor prognosis in GBC patients.TOP2A promotes GBC cell proliferation,migration,invasion,EMT process,and tumor growth through activating PI3K/Akt/mTOR signaling pathway,and may serve as a novel prognostic biomarker and therapeutic target for GBC. 展开更多
关键词 TopoisomeraseⅡalpha Gallbladder cancer PROLIFERATION METASTASIS Epithelial-mesenchymal transition Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway
原文传递
Influence of Phosphatidylinositol-3-Kinase/Protein Kinase B-Mammalian Target of Rapamycin Signaling Pathway on the Neuropathic Pain Complicated by Nucleoside Reverse Transcriptase Inhibitors for the Treatment of HIV Infection 被引量:3
17
作者 Hao Cheng Liang-Yu Wu 《Chinese Medical Journal》 SCIE CAS CSCD 2018年第15期1849-1856,共8页
Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. Howe... Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. However, NRTI drug therapy can cause peripheral neuropathic pain. In this study, we aimed to investigate the mechanisms ofrapamycin on the pain sensitization of model mice by in vivo experiments to explore the effect of mammalian target of rapamycin (mTOR) in the pathogenesis ofneuropathic pain caused by NRTIs. Methods: Male Kun Ming (KM) mice weighing 20-2 g were divided into control, 2 mg/kg rapamycin, 12 mg/kg stavudine, and CMC-Na groups. Drugs were orally administered to mice for 42 consecutive days. The von Frey filament detection and thermal pain tests were conducted on day 7, 14, 21, 28, 35, and 42 after drug administration. After the last behavioral tests, immunohistochemistry and western blotting assay were used for the measurement of mTOR and other biomarkers. Multivariate analysis of variance was used. Results: The beneficial effects ofrapamycin on neuropathic pain were attributed to a reduction in mammalian target of rapamycin sensitive complex 1 (mTORC1)-positive cells (70.80± 2.41 vs. 112.30 ± 5.66, F = 34.36, P 〈 0.01 ) and mTORC1 activity in the mouse spinal cord. Mechanistic studies revealed that Protein Kinase B (Akt)/mTOR signaling pathway blockade with rapamycin prevented the phosphorylation of mTORC1 in stavudine-intoxicated mice (0.72 ± 0.04 vs. 0.86 ± 0.03, F=4.24, P = 0.045), as well as decreased the expression of phospho-pTOS6K (0.47 ± 0.01 vs. 0.68 ± 0.03, F=6.01, P = 0.022) and phospho-4EBP1 (0.90 ± 0.04 vs. 0.94 ± 0.06, F= 0.28, P = 0.646). Conclusions: Taken together, these results suggest that stavudine elevates the expression and activity of mTORC1 in the spinal cord through activating the Akt/mTOR signaling pathway. The data also provide evidence that rapamycin might be useful for the treatment of peripheral neuropathic pain. 展开更多
关键词 Human lmmunodeficiency Vinls Infection Neuropathic Pain Nucleoside Reverse Transcriptase lnhibitors Phosphatidylinositol-3-Kinase/Protein Kinase B/Mammalian target of Rapamycin Signaling Pathway RAPAMYCIN
原文传递
Machine Learning Modeling of Protein-intrinsic Features Predicts Tractability of Targeted Protein Degradation
18
作者 Wubing Zhang Shourya S.Roy Burman +11 位作者 Jiaye Chen Katherine A.Donovan Yang Cao Chelsea Shu Boning Zhang Zexian Zeng Shengqing Gu Yi Zhang Dian Li Eric S.Fischer Collin Tokheim X.Shirley Liu 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2022年第5期882-898,共17页
Targeted protein degradation(TPD)has rapidly emerged as a therapeutic modality to eliminate previously undruggable proteins by repurposing the cell’s endogenous protein degradation machinery.However,the susceptibilit... Targeted protein degradation(TPD)has rapidly emerged as a therapeutic modality to eliminate previously undruggable proteins by repurposing the cell’s endogenous protein degradation machinery.However,the susceptibility of proteins for targeting by TPD approaches,termed“degradability”,is largely unknown.Here,we developed a machine learning model,model-free analysis of protein degradability(MAPD),to predict degradability from features intrinsic to protein targets.MAPD shows accurate performance in predicting kinases that are degradable by TPD compounds[with an area under the precision–recall curve(AUPRC)of 0.759 and an area under the receiver operating characteristic curve(AUROC)of 0.775]and is likely generalizable to independent non-kinase proteins.We found five features with statistical significance to achieve optimal prediction,with ubiquitination potential being the most predictive.By structural modeling,we found that E2-accessible ubiquitination sites,but not lysine residues in general,are particularly associated with kinase degradability.Finally,we extended MAPD predictions to the entire proteome to find964 disease-causing proteins(including proteins encoded by 278 cancer genes)that may be tractable to TPD drug development. 展开更多
关键词 targeted protein degradation DEGRADABILITY Protein-intrinsic feature UBIQUITINATION Machine learning
原文传递
Identification of marine natural product Pretrichodermamide B as a STAT3 inhibitor for efficient anticancer therapy
19
作者 Rui Li Yue Zhou +7 位作者 Xinxin Zhang Lujia Yang Jieyu Liu Samantha M.Wightman Ling Lv Zhiqing Liu Chang-Yun Wang Chenyang Zhao 《Marine Life Science & Technology》 SCIE CAS CSCD 2023年第1期94-101,共8页
The Janus kinase(JAK)/signal transducer and activator of transcription 3(STAT3)regulates the expression of various critical mediators of cancer and is considered as one of the central communication nodes in cell growt... The Janus kinase(JAK)/signal transducer and activator of transcription 3(STAT3)regulates the expression of various critical mediators of cancer and is considered as one of the central communication nodes in cell growth and survival.Marine natural products(MNP)represent great resources for discovery of bioactive lead compounds,especially anti-cancer agents.Through the medium-throughput screening of our in-house MNP library,Pretrichodermamide B,an epidithiodiketopiperazine,was identified as a JAK/STAT3 signaling inhibitor.Further studies identified that Pretrichodermamide B directly binds to STAT3,preventing phosphorylation and thus inhibiting JAK/STAT3 signaling.Moreover,it suppressed cancer cell growth,in vitro,at low micromolar concentrations and demonstrated efficacy in vivo by decreasing tumor growth in a xenograft mouse model.In addition,it was shown that Pretrichodermamide B was able to induce cell cycle arrest and promote cell apoptosis.This study demonstrated that Pretrichodermamide B is a novel STAT3 inhibitor,which should be considered for further exploration as a promising anti-cancer therapy. 展开更多
关键词 Pretrichodermamide B Signal transducer and activator of transcription 3(STAT3) Marine natural products target protein In vivo anti-cancer efficacy
原文传递
Emodin Ameliorates High Glucose-Induced Podocyte Apoptosis via Regulating AMPK/mTOR-Mediated Autophagy Signaling Pathway
20
作者 LIU Hong CHEN Wei-dong +4 位作者 HU Yang-lin YANG Wen-qiang HU Tao-tao WANG Huan-lan ZHANG Yan-min 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2023年第9期801-808,共8页
Objective To investigate the effect of emodin on high glucose(HG)-induced podocyte apoptosis and whether the potential anti-apoptotic mechanism of emodin is related to induction of adenosine-monophosphate-activated pr... Objective To investigate the effect of emodin on high glucose(HG)-induced podocyte apoptosis and whether the potential anti-apoptotic mechanism of emodin is related to induction of adenosine-monophosphate-activated protein kinase(AMPK)/mammalian target of rapamycin(mTOR)-mediated autophagy in podocytes(MPC5 cells)in vitro.Methods MPC5 cells were treated with different concentrations of HG(2.5,5,10,20,40,80 and 160 mmol/L),emodin(2,4,8µmol/L),or HG(40 mmol/L)and emodin(4µmol/L)with or without rapamycin(Rap,100 nmol/L)and compound C(10µmol/L).The viability and apoptosis of MPC5 cells were detected using cell counting kit-8(CCK-8)assay and flow cytometry analysis,respectively.The expression levels of cleaved caspase-3,autophagy marker light chain 3(LC3)Ⅰ/Ⅱ,and AMPK/mTOR signaling pathway-related proteins were determined by Western blot.The changes of morphology and RFP-LC3 fluorescence were observed under microscopy.Results HG at 20,40,80 and 160 mmol/L dose-dependently induced cell apoptosis in MPC5 cells,whereas emodin(4µmol/L)significantly ameliorated HG-induced cell apoptosis and caspase-3 cleavage(P<0.01).Emodin(4µmol/L)significantly increased LC3-Ⅱ protein expression levels and induced RFP-LC3-containing punctate structures in MPC5 cells(P<0.01).Furthermore,the protective effects of emodin were mimicked by rapamycin(100 nmol/L).Moreover,emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR.The AMPK inhibitor compound C(10µmol/L)reversed emodin-induced autophagy activation.Conclusion Emodin ameliorated HG-induced apoptosis of MPC5 cells in vitro that involved induction of autophagy through the AMPK/mTOR signaling pathway,which might provide a potential therapeutic option for diabetic nephropathy. 展开更多
关键词 EMODIN diabetic nephropathy AUTOPHAGY podocyte apoptosis adenosine-monophosphate-activated protein kinase/mammalian target of rapamycin signaling pathways
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部