The target reliability index has been effectively used as the best solution to deal with the relationship between the structural safety and the optimal economy in any structural design. However, the target reliability...The target reliability index has been effectively used as the best solution to deal with the relationship between the structural safety and the optimal economy in any structural design. However, the target reliability index for offshore jacket platforms based on different sea areas in China has never been calibrated. This paper presents an approach for its calibration, and suggests many kinds of associated load cases. The uncertainties of loads and structural resistance are mainly in- vestigated. The target reliability index for structural components, tubular joints and piles of offshore jacket plaffortns are discussed respectively in detail. Finally, through the calibrated results from the offshore jacket platforms of QK18-1, JZ20-2, SZ36-1 and BZ28-1 in the Bohai Bay, it is proposed to adopt 2.8 as the target reliability index of offshore jacket platforms in the Bohai Bay for a 25-year design period. The results provide significant reference for the design of offshore jacket platforms.展开更多
The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) o...The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.展开更多
The target reliability indices of the foundation structures of sea-crossing bridges on the serviceability limit state (SLS) are different from those of common bridges due to their different surroundings. Consequentl...The target reliability indices of the foundation structures of sea-crossing bridges on the serviceability limit state (SLS) are different from those of common bridges due to their different surroundings. Consequently, three levels of the target reliability indices, which are 1.5, 2. 0 and 2. 3, respectively, for those structures on the SLS are suggested based on the Joint Committee on Structural Safety (JCSS) model code, and a new method of calibrating factors of live loads, which is based on the contribution ratio of tensile stresses of reinforcing bars produced by various loads to the maximum crack width of concrete, is proposed. Finally, the calibration of the reliability-based factors of the frequent value and the quasi-permanent value of live loads is conducted by the Joint Committee (JC) method through an actual design, and the indices are proved to be reasonable and the new method is proved to be feasible.展开更多
Adopting the load and resistance factor design format, the design method for steel jaeket platform structures is developed. Firstly, the limit state equations and design format for steel jacket platform structures are...Adopting the load and resistance factor design format, the design method for steel jaeket platform structures is developed. Firstly, the limit state equations and design format for steel jacket platform structures are introduced. Then, the ratio of live load effect to dead load effect is estimated. The target reliabilities for design of offshore structures in China offshore area are calibrated by past practice in API RP2A-WSD code. The load and resistance factors are optimized by minimizing the difference within the target reliability and the resulting reliability over the range of load effect ratios. Considering the concurrence of different loads, load combination factors are obtained through an optimization process, and the relation between the load combination factor and load correlation coefficient is established. Finally, the design formulae for steel jacket structures in China offshore area are recommended.展开更多
It is common to assume that structures are designed in view of 50 year life cycle as per Euro-Code 2 and other codes. In special cases, structures are designed in view of longer life cycle, such as bridges, important ...It is common to assume that structures are designed in view of 50 year life cycle as per Euro-Code 2 and other codes. In special cases, structures are designed in view of longer life cycle, such as bridges, important infrastructure facilities, important religious structures or in case of extended returning period of seismic event or floods. Beside issues of durability and maintenance aspects, this involves also the need to cover the probability of exceeding characteristic design live loads during the extended period, while keeping the same levels of the accepted risk that were assumed by the various codes, as good enough for the standard 50 year life cycle. Bearing in mind that design procedures, formulations, materials characteristic strengths and partial safety factors are used for these structures as per the existing codes, scaling of partial safety factors, or alternatively an additional "compensating" factor is required. A simplified approach and procedure to arrive at a reasonable calibration of the code safety factors based on 50 years to compensate for an extended life cycle, based upon structural reliability considerations, is proposed.展开更多
文摘The target reliability index has been effectively used as the best solution to deal with the relationship between the structural safety and the optimal economy in any structural design. However, the target reliability index for offshore jacket platforms based on different sea areas in China has never been calibrated. This paper presents an approach for its calibration, and suggests many kinds of associated load cases. The uncertainties of loads and structural resistance are mainly in- vestigated. The target reliability index for structural components, tubular joints and piles of offshore jacket plaffortns are discussed respectively in detail. Finally, through the calibrated results from the offshore jacket platforms of QK18-1, JZ20-2, SZ36-1 and BZ28-1 in the Bohai Bay, it is proposed to adopt 2.8 as the target reliability index of offshore jacket platforms in the Bohai Bay for a 25-year design period. The results provide significant reference for the design of offshore jacket platforms.
基金Projects(51278216,51308241)supported by the National Natural Science Foundation of ChinaProject(2013BS010)supported by the Funds of Henan University of Technology for High-level Talents,China
文摘The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.
基金The National Natural Science Foundation of China (No.50538070).
文摘The target reliability indices of the foundation structures of sea-crossing bridges on the serviceability limit state (SLS) are different from those of common bridges due to their different surroundings. Consequently, three levels of the target reliability indices, which are 1.5, 2. 0 and 2. 3, respectively, for those structures on the SLS are suggested based on the Joint Committee on Structural Safety (JCSS) model code, and a new method of calibrating factors of live loads, which is based on the contribution ratio of tensile stresses of reinforcing bars produced by various loads to the maximum crack width of concrete, is proposed. Finally, the calibration of the reliability-based factors of the frequent value and the quasi-permanent value of live loads is conducted by the Joint Committee (JC) method through an actual design, and the indices are proved to be reasonable and the new method is proved to be feasible.
文摘Adopting the load and resistance factor design format, the design method for steel jaeket platform structures is developed. Firstly, the limit state equations and design format for steel jacket platform structures are introduced. Then, the ratio of live load effect to dead load effect is estimated. The target reliabilities for design of offshore structures in China offshore area are calibrated by past practice in API RP2A-WSD code. The load and resistance factors are optimized by minimizing the difference within the target reliability and the resulting reliability over the range of load effect ratios. Considering the concurrence of different loads, load combination factors are obtained through an optimization process, and the relation between the load combination factor and load correlation coefficient is established. Finally, the design formulae for steel jacket structures in China offshore area are recommended.
文摘It is common to assume that structures are designed in view of 50 year life cycle as per Euro-Code 2 and other codes. In special cases, structures are designed in view of longer life cycle, such as bridges, important infrastructure facilities, important religious structures or in case of extended returning period of seismic event or floods. Beside issues of durability and maintenance aspects, this involves also the need to cover the probability of exceeding characteristic design live loads during the extended period, while keeping the same levels of the accepted risk that were assumed by the various codes, as good enough for the standard 50 year life cycle. Bearing in mind that design procedures, formulations, materials characteristic strengths and partial safety factors are used for these structures as per the existing codes, scaling of partial safety factors, or alternatively an additional "compensating" factor is required. A simplified approach and procedure to arrive at a reasonable calibration of the code safety factors based on 50 years to compensate for an extended life cycle, based upon structural reliability considerations, is proposed.