期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Hepatitis B virus envelope as a targeting gene transfer vector for hepatic cancer cells 被引量:1
1
作者 Dejian Pan Weibing Wang +1 位作者 Donglin Wang Zhengtang Chen 《The Chinese-German Journal of Clinical Oncology》 CAS 2009年第8期447-452,共6页
Objective: The aim of the study was to observe the transfection efficacy of hepatitis B virus envelope (HBVE) and evaluate its ability as a gene transfer vector for liver cancer cells. Methods: To obtain HBVE, the... Objective: The aim of the study was to observe the transfection efficacy of hepatitis B virus envelope (HBVE) and evaluate its ability as a gene transfer vector for liver cancer cells. Methods: To obtain HBVE, the supematant fluid of HepG 2.2.15 cells was mixed with a PEG8000 solution for concentration and was inactivated by β-propiolactone. The acquired HBVE was used to pack plRES2-EGFP to test its package ability. Then, we examined its quantity and quality with ELISA, PCR, SDS-PAGE and electron microscopy. The plRES2-EGFP was packed with HBVE and obtained the product HBVE-GFP. The plRES2-EGFP was packed with liposome and obtained the product liposome-GFP. HBVE-GFP and liposome-GFP were used to transfer HepG 2 cells to study the transfection efficiency. HBVE-GFP was used to transfer HepG 2, A549, HeLa and FB cells to study the targeting ability. The green fluorescent protein (GFP) expression was observed under a fluorescent microscope. The rate of GFP positive cells was determined by flow cytometry. Results: 1. The acquired HBVE could retain the surface protein HBsAg + pre S1 + pre S2 and had no virus DNA. It had good package ability for plRES2-EGFP. 2. Transfection efficiency: The GFP could be observed in both the liposome group and HBVE group under the fluorescent microscope. But the HBVE group had a higher fluorescent intensity than liposome group. The transfection rate of liposome group was 49.97% + 2.37% while the HBVE group was 70.65% + 3.15% and the fluorescent intensity of the HBVE group was 3-4 times (P = 0.000) for liposome group with the determination of flow cytometry. 3. Targeting ability: The GFP could be observed in the four groups under the fluorescent microscope. The HepG 2 group had the highest fluorescent intensity among the four groups. The transfection rate of HepG 2 group was 71.35% + 0.03% which was highly expressed than other groups (P = 0.000) and the fluorescent intensity of the HepG 2 group was 2-3 times (P = 0.000) for the other 3 groups with the determination of flow cytometry. Conclusion: HBVE can be constructed successfully with the methods of PEG8000 and β-propiolactone from the supernatant fluid of HepG 22.15 cells. The HBVE can be a candidate gene transfer vector for liver cancer cells. 展开更多
关键词 hepatitis B virus envelope (HBVE) transfection efficacy targeting ability hepatic cancer gene transfer vector
下载PDF
CXCR4 Peptide Conjugated Au-Fe2O3 Nanoparticles for Tumor-targeting Magnetic Resonance Imaging
2
作者 LIU Guifeng CHEN Hongda +2 位作者 YU Shaonan LI Xiaodong WANG Zhenxin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2018年第4期584-589,共6页
Peptide-functionalized Au-Fe2O3 nanoparticles(termed as anti-CXCR4-Au-Fe2O3 NPs) have been constructed through conjugation of dumbbell-like Au-Fe203 NPs with C-X-C motif chemokine receptor 4(CXCR4) binding cyclic ... Peptide-functionalized Au-Fe2O3 nanoparticles(termed as anti-CXCR4-Au-Fe2O3 NPs) have been constructed through conjugation of dumbbell-like Au-Fe203 NPs with C-X-C motif chemokine receptor 4(CXCR4) binding cyclic peptide. One dumbbelMike Au-Fe2O3NP composes an Au NP[(3.3±0.3) nm in diameter] for conjugating CXCR4 binding cyclic peptide through Au-S covalent bond and a Fe2O3 NP[(8.7±0.8) nm in diameter] for using as T2-weighted magnetic resonance imaging(MRI) contrast agent. The anti-CXCR4-Au-Fe2O3 NPs have reasonable biocompatibility and integration of T2-weighted MRI contrast and tumor-targeting functionalities. The anti- CXCR4-Au-Fe2O3 NPs exhibit strong interactions with two kinds of breast tumor cells, MCF-7 cells and MDA-MB-231 cells, and high negative contrast in MRI of MDA-MB-231 tumor bearing mouse with 62% decreasing of MRI signal, indicating that the anti-CXCR4-Au-Fe2O3 NPs can recognize tumor with high efficacy and specificity. 展开更多
关键词 Dumbbell-like Au-Fe2O3 nanoparticle C-X-C motif chemokine receptor 4 Cyclic peptide T2-Weighted magnetic resonance imaging Tumor targeting ability
原文传递
Recent Advances of AIEgens for Targeted Imaging of Subcellular Organelles
3
作者 SONG Nan XIAO Peihong +5 位作者 MA Ke KANG Miaomiao ZHU Wei HUANG Jiachang WANG Dong TANG Ben Zhong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2021年第1期52-65,共14页
Fluorescence imaging based on luminogens with aggregation-induced emission(AIE)effect has drawn great attention in recent two decades,due to their superior advantages to overcome the technical difficulties.Thus,the AI... Fluorescence imaging based on luminogens with aggregation-induced emission(AIE)effect has drawn great attention in recent two decades,due to their superior advantages to overcome the technical difficulties.Thus,the AIE-active bioprobes with targeted ability at the subcellular level have been widely investigated to visualize the subcellular structures and monitor the biological processes.Considering the very rapid developments and the significance of selective imaging of subcellular structures,we summarize the recent two-year achievements about the AIEgens for targeted imaging of subcellular organelles including nuclei,membranes,lipid droplets(LDs),endoplasmic reticulum(ER),lysosomes,mitochondria and cytoplasm.The designed protocols and advantages of AIEgens,their mechanisms for targeted staining at organelles and the imaging performance are discussed.These AIE bioprobes exhibit great potentials for early diagnosis and therapeutics of diseases that related to subcellular organelles.Finally,the perspectives about AIEgens for these applications are also discussed. 展开更多
关键词 Aggregation-induced emission Monitoring bioprocess Subcellular organelles Targeted ability THERANOSTICS
原文传递
pH-Responsive Polycarbonate Copolymer-based Nanoparticles for Targeted Anticancer Drug Delivery
4
作者 LI Yunxia DU Wenjuan +5 位作者 FU Zhiguang WANG Huanhuan WANG Jiexin LE Yuan ZHANG Jianjun WEN Ning 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2018年第6期1041-1050,共10页
A smart polycarbonate(PCA) copolymer-based nanoparticle(NanoPCA) with pH-responsive, long-term stability, and tumor targeting ability was successfully developed by synthesizing and assembling a series of functiona... A smart polycarbonate(PCA) copolymer-based nanoparticle(NanoPCA) with pH-responsive, long-term stability, and tumor targeting ability was successfully developed by synthesizing and assembling a series of functional PCA-based copolymers including poly(2-amino-l,3-propanediol carbonate-co-L-lactide)[P(CA-co-LA)], poly(2- amino-1,3-propanediol carbonate-co-L-lactide)-g-methoxy-poly(ethylene glycol)[P(CA-co-LA)-g-MPEG], and poly(2-amino-1,3-propanediol carbonate-co-L-lactide)-g-poly(ethylene glycol)-cyclic(Arg-Gly-Asp-D-Phe-Lys) [P(CA-co-LA)-g-PEG-cRGD] for targeted anticancer drug delivery, pH-Responsive studies demonstrated that the loading doxorubicin(DOX) released faster from NanoPCA at acidic conditions due to protonation effects of P(CA-co-LA) copolymers. Furthermore, the in vitro and in vivo investigations demonstrate that the DOX-loaded NanoPCA exhibited significant tumor targeting ability, outstanding antitumor effect and excellent biological safety in the treatment of oral squamous cell carcinoma(OSCC). Therefore, this work provides a promising drug delivery plat-form for cancer therapy and other applications. 展开更多
关键词 Polycarbonate copolymer-based nanoparticle(NanoPCA) PH-RESPONSIVE Tumor targeting ability Oral squamous cell carcinoma(OSCC)
原文传递
Target recognition algorithm for passive sonar system with high generalization ability
5
作者 GAO Xiang LU Jiren (Department of Radio Engzneering, Southeast University Nanjing 210018) 《Chinese Journal of Acoustics》 1998年第2期179-188,共10页
A new algorithm based on a Supervised Self-Organizing neural network for the pas sive sonar target recognition was proposed. Because of the incompleteness of the passive sonar exemplar set, the algorithm introduced a ... A new algorithm based on a Supervised Self-Organizing neural network for the pas sive sonar target recognition was proposed. Because of the incompleteness of the passive sonar exemplar set, the algorithm introduced a Multi-Activation-function structure and Supervised Self-Organizing competitive learning algorithm into the classic feed-forward neural networks,and obviously improved the generalization ability in target recognition. Besides, it can effi ciently reduce the learning time and avoid the local optimum. The recognition experiments of realistic passive sonar signals show that this new algorithm has good generalization ability and high recognition rate 展开更多
关键词 Target recognition algorithm for passive sonar system with high generalization ability HIGH IEEE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部