Few-shot intent detection is a practical challenge task,because new intents are frequently emerging and collecting large-scale data for them could be costly.Meta-learning,a promising technique for leveraging data from...Few-shot intent detection is a practical challenge task,because new intents are frequently emerging and collecting large-scale data for them could be costly.Meta-learning,a promising technique for leveraging data from previous tasks to enable efficient learning of new tasks,has been a popular way to tackle this problem.However,the existing meta-learning models have been evidenced to be overfitting when the meta-training tasks are insufficient.To overcome this challenge,we present a novel self-supervised task augmentation with meta-learning framework,namely STAM.Firstly,we introduce the task augmentation,which explores two different strategies and combines them to extend meta-training tasks.Secondly,we devise two auxiliary losses for integrating self-supervised learning into meta-learning to learn more generalizable and transferable features.Experimental results show that STAM can achieve consistent and considerable performance improvement to existing state-of-the-art methods on four datasets.展开更多
Traditionally, heuristic re-planning algorithms are used to tackle the problem of dynamic task planning for multiple satellites. However, the traditional heuristic strategies depend on the concrete tasks, which often ...Traditionally, heuristic re-planning algorithms are used to tackle the problem of dynamic task planning for multiple satellites. However, the traditional heuristic strategies depend on the concrete tasks, which often affect the result’s optimality. Noticing that the historical information of cooperative task planning will impact the latter planning results, we propose a hybrid learning algorithm for dynamic multi-satellite task planning, which is based on the multi-agent reinforcement learning of policy iteration and the transfer learning. The reinforcement learning strategy of each satellite is described with neural networks. The policy neural network individuals with the best topological structure and weights are found by applying co-evolutionary search iteratively. To avoid the failure of the historical learning caused by the randomly occurring observation requests, a novel approach is proposed to balance the quality and efficiency of the task planning, which converts the historical learning strategy to the current initial learning strategy by applying the transfer learning algorithm. The simulations and analysis show the feasibility and adaptability of the proposed approach especially for the situation with randomly occurring observation requests.展开更多
基金the National Natural Science Foundation of China under Grant Nos.61936012 and 61976114。
文摘Few-shot intent detection is a practical challenge task,because new intents are frequently emerging and collecting large-scale data for them could be costly.Meta-learning,a promising technique for leveraging data from previous tasks to enable efficient learning of new tasks,has been a popular way to tackle this problem.However,the existing meta-learning models have been evidenced to be overfitting when the meta-training tasks are insufficient.To overcome this challenge,we present a novel self-supervised task augmentation with meta-learning framework,namely STAM.Firstly,we introduce the task augmentation,which explores two different strategies and combines them to extend meta-training tasks.Secondly,we devise two auxiliary losses for integrating self-supervised learning into meta-learning to learn more generalizable and transferable features.Experimental results show that STAM can achieve consistent and considerable performance improvement to existing state-of-the-art methods on four datasets.
文摘Traditionally, heuristic re-planning algorithms are used to tackle the problem of dynamic task planning for multiple satellites. However, the traditional heuristic strategies depend on the concrete tasks, which often affect the result’s optimality. Noticing that the historical information of cooperative task planning will impact the latter planning results, we propose a hybrid learning algorithm for dynamic multi-satellite task planning, which is based on the multi-agent reinforcement learning of policy iteration and the transfer learning. The reinforcement learning strategy of each satellite is described with neural networks. The policy neural network individuals with the best topological structure and weights are found by applying co-evolutionary search iteratively. To avoid the failure of the historical learning caused by the randomly occurring observation requests, a novel approach is proposed to balance the quality and efficiency of the task planning, which converts the historical learning strategy to the current initial learning strategy by applying the transfer learning algorithm. The simulations and analysis show the feasibility and adaptability of the proposed approach especially for the situation with randomly occurring observation requests.