Catharanthus roseus contains important anti-tumor terpenoid indole alkaloids (TIAs) such as vinblastine and vincristine. Cytochrome P450 enzyme geraniol 10-hydroxylase (G10H) is a putative rate-limiting enzyme involve...Catharanthus roseus contains important anti-tumor terpenoid indole alkaloids (TIAs) such as vinblastine and vincristine. Cytochrome P450 enzyme geraniol 10-hydroxylase (G10H) is a putative rate-limiting enzyme involved in the TIAs biosynthetic pathway in C. roseus. In this study the g10h gene driven by the cauliflower mosaic virus 35S (CaMV 35S) promoter was introduced into C. roseus through Agrobacterium-mediated transformation. The integration and overexpression of the target gene (g10h) in hairy root lines were confirmed by polymerase chain reaction and RT-QPCR analysis respectively. Overexpression of g10h in transgenic hairy root lines significantly enhanced the accumulations of monomeric alkaloid ajmalicine and dimeric alkaloids, vincristine and vinblastine. Total TIAs production in hairy roots reached (9.51) mg/g DW, over 3-fold higher than that in the untransformed root lines. This is the first report that engineering of g10h into TIAs-producing plant species results in significant enhancement of TIAs accumulation in cultured hairy roots. This study demonstrates that the putative rate-limiting step catalyzed by G10H is indeed the real rate-limiting step involved in the TIAs biosynthetic pathway in C. roseus, which is one of the key targets for promoting TIAs production by genetic engineering.展开更多
Introduction:ATP-binding cassette subfamily B member 1(ABCB1) and subfamily C member 10(ABCCIO) proteins are efflux transporters that couple the energy derived from ATP hydrolysis to the translocation of toxic substan...Introduction:ATP-binding cassette subfamily B member 1(ABCB1) and subfamily C member 10(ABCCIO) proteins are efflux transporters that couple the energy derived from ATP hydrolysis to the translocation of toxic substances and chemotherapeutic drugs out of cells.Cabazitaxel is a novel taxane that differs from paclitaxel by its lower affinity for ATP-binding cassette(ABC) transporters.Methods:We determined the effects of cabazitaxel,a novel tubulin-binding taxane,and paclitaxel on paclitaxelresistant,ABCB1-overexpressing KB-C2 and LLC-MDR1-WT cells and paclitaxel-resistant,ABCC10-overexpressing HEK293/ABCC10 cells by calculating the degree of drug resistance and measuring ATPase activity of the ABCB1 transporter.Results:Decreased resistance to cabazitaxel compared with paclitaxel was observed in KB-C2,LLC-MDR1-WT,and HEK293/ABCC10 cells.Moreover,cabazitaxel had low efficacy,whereas paclitaxel had high efficacy in stimulating the ATPase activity of ABCB1,indicating a direct interaction of both drugs with the transporter.Conclusion:ABCB1 and ABCC10 are not primary resistance factors for cabazitaxel compared with paclitaxel,suggesting that cabazitaxel may have a low affinity for these efflux transporters.展开更多
基金Item supported by China national"863"high-tech program (2002AA212191)China ministry of educa-tion and science and technology commission of Shanghai(04XD14011)
文摘Catharanthus roseus contains important anti-tumor terpenoid indole alkaloids (TIAs) such as vinblastine and vincristine. Cytochrome P450 enzyme geraniol 10-hydroxylase (G10H) is a putative rate-limiting enzyme involved in the TIAs biosynthetic pathway in C. roseus. In this study the g10h gene driven by the cauliflower mosaic virus 35S (CaMV 35S) promoter was introduced into C. roseus through Agrobacterium-mediated transformation. The integration and overexpression of the target gene (g10h) in hairy root lines were confirmed by polymerase chain reaction and RT-QPCR analysis respectively. Overexpression of g10h in transgenic hairy root lines significantly enhanced the accumulations of monomeric alkaloid ajmalicine and dimeric alkaloids, vincristine and vinblastine. Total TIAs production in hairy roots reached (9.51) mg/g DW, over 3-fold higher than that in the untransformed root lines. This is the first report that engineering of g10h into TIAs-producing plant species results in significant enhancement of TIAs accumulation in cultured hairy roots. This study demonstrates that the putative rate-limiting step catalyzed by G10H is indeed the real rate-limiting step involved in the TIAs biosynthetic pathway in C. roseus, which is one of the key targets for promoting TIAs production by genetic engineering.
基金supported by funds from the National Institutes of Health (1R15CA143701)St.John's University Research Seed Grant(579-1110-7002) to Dr.Zhe-Sheng Chen.Drs.Suneet ShuklaSuresh V.Ambudkar were supported by the Intramural Research Program,Center for Cancer Research, National Cancer Institute,National Institutes of Health
文摘Introduction:ATP-binding cassette subfamily B member 1(ABCB1) and subfamily C member 10(ABCCIO) proteins are efflux transporters that couple the energy derived from ATP hydrolysis to the translocation of toxic substances and chemotherapeutic drugs out of cells.Cabazitaxel is a novel taxane that differs from paclitaxel by its lower affinity for ATP-binding cassette(ABC) transporters.Methods:We determined the effects of cabazitaxel,a novel tubulin-binding taxane,and paclitaxel on paclitaxelresistant,ABCB1-overexpressing KB-C2 and LLC-MDR1-WT cells and paclitaxel-resistant,ABCC10-overexpressing HEK293/ABCC10 cells by calculating the degree of drug resistance and measuring ATPase activity of the ABCB1 transporter.Results:Decreased resistance to cabazitaxel compared with paclitaxel was observed in KB-C2,LLC-MDR1-WT,and HEK293/ABCC10 cells.Moreover,cabazitaxel had low efficacy,whereas paclitaxel had high efficacy in stimulating the ATPase activity of ABCB1,indicating a direct interaction of both drugs with the transporter.Conclusion:ABCB1 and ABCC10 are not primary resistance factors for cabazitaxel compared with paclitaxel,suggesting that cabazitaxel may have a low affinity for these efflux transporters.