To investigate the nitrifying activities of different soil types, soil samples collected from 8-, 50- and 90-year old tea orchards, the adjacent wasteland, and 90-year old forest were measured for their nitrification ...To investigate the nitrifying activities of different soil types, soil samples collected from 8-, 50- and 90-year old tea orchards, the adjacent wasteland, and 90-year old forest were measured for their nitrification potentials using the conventional soil incubation and the liquid incubation method. Among different soil types, the nitrification potential of soil in tea orchards was higher than that of wasteland and forest soils. The slurry shaken liquid incubation method was confirmed to be more accurate and have reliable results than the soil incubation. Interestingly, experimental result revealed that the generally applied pH value of 7.2 for the liquid media was not the optimal pH for these acid soils with a strong buffer capacity. This suggested that tea orchard soils may have nitrifiers requiring pHneutral condition for the best activity. Our data also showed that treatment with the commonly used nitrogen fertilizer urea significantly improved nitrification potential of the soils; such enhancement effect was stronger on all of three tea orchard soils than on wasteland and forest soils, and also stronger on the younger (8- and 50-year old) tea orchard soils than on the older one (90-year old).展开更多
Lime application is a conventional technology to control acidification in tea orchard soils. We investigated the effect of lime application on soil microbial community diversity in the soils of three tea orchards, was...Lime application is a conventional technology to control acidification in tea orchard soils. We investigated the effect of lime application on soil microbial community diversity in the soils of three tea orchards, wasteland and forest. The BIOLOG data showed that both the average well color development of all carbon sources and the functional diversity index increased with the liming rate in the tea orchards and the forest, but decreased in the wasteland. The phospholipid fatty acid (PLFA) analysis showed that the structural diversity index of soil microbial community increased with the liming rate in all the tea orchards, the wasteland and the forest. Lime application also increased the soil-bacterial PLFA content in all the soils. Soil fungal and actinomycete PLFAs in the tea orchards showed an increasing trend from 0 to 3.2 g CaCO 3 /kg application and then a decreasing trend from 3.2 to 6.4 g CaCO 3 /kg application. The principal component analysis of BIOLOG and PLFA data suggested that lime application had a significant effect on soil microbial community structure, and land use had a greater effect on soil microbial community structure compared to lime application.展开更多
It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical f...It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative poly- merase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was signif- icantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of mi- crobial communities and the abundance of genes involved in the nitrogen cycle.展开更多
针对果、茶园规模不断扩张并逐渐向智能农业机械化发展的趋势以及常用道路语义分割数据集缺少果、茶园道路场景等问题,将语义分割技术应用到部分果、茶园道路中,以实现对果、茶园道路的像素级分割。以道路、人和车为分类对象,建立果、...针对果、茶园规模不断扩张并逐渐向智能农业机械化发展的趋势以及常用道路语义分割数据集缺少果、茶园道路场景等问题,将语义分割技术应用到部分果、茶园道路中,以实现对果、茶园道路的像素级分割。以道路、人和车为分类对象,建立果、茶园道路场景图像数据集(包括6032张图像),将数据集按照9∶1比例随机划分为训练集(5429张图像)和测试集(603张图像)。以PSPNet(pyramid scene parsing network,金字塔场景解析网络)分割模型为基础进行优化,构建MS-PSPNet语义分割模型;训练结果显示,MS-PSPNet模型的MIoU(mean intersection over union,平均交并比)为83.41%,FPS(frames per second,每秒传输帧数)为22.31。将MS-PSPNet模型应用在果、茶园不同道路条件和光照强度下进行现场试验,并进行准确度评估,结果显示,MS-PSPNet模型类别MPA(mean pixel accuracy),像素准确率均超过92%,MIoU在除非硬化道路条件情况均超过91%,表明MS-PSPNet模型在果、茶园道路识别中具有较好的有效性和适用性。展开更多
基金supported by the National Natural Science Foundation of China(No.30671207,30871600)Zhejiang Provincial National Natural Science Foundation of China(No.Y5080067)the Doctoral Scientific Research Foundation of Luoyang Institute of Science and Technology(No.2008BZ04)
文摘To investigate the nitrifying activities of different soil types, soil samples collected from 8-, 50- and 90-year old tea orchards, the adjacent wasteland, and 90-year old forest were measured for their nitrification potentials using the conventional soil incubation and the liquid incubation method. Among different soil types, the nitrification potential of soil in tea orchards was higher than that of wasteland and forest soils. The slurry shaken liquid incubation method was confirmed to be more accurate and have reliable results than the soil incubation. Interestingly, experimental result revealed that the generally applied pH value of 7.2 for the liquid media was not the optimal pH for these acid soils with a strong buffer capacity. This suggested that tea orchard soils may have nitrifiers requiring pHneutral condition for the best activity. Our data also showed that treatment with the commonly used nitrogen fertilizer urea significantly improved nitrification potential of the soils; such enhancement effect was stronger on all of three tea orchard soils than on wasteland and forest soils, and also stronger on the younger (8- and 50-year old) tea orchard soils than on the older one (90-year old).
基金supported by the National Natural Science Foundation of China (No. 30671207, 30871600)the Zhejiang Provincial National Science Foundation of China(No. Y5080067)the Doctoral Scientific Research Foundation of Luoyang Institute of Science and Technology (No. 2008BZ04)
文摘Lime application is a conventional technology to control acidification in tea orchard soils. We investigated the effect of lime application on soil microbial community diversity in the soils of three tea orchards, wasteland and forest. The BIOLOG data showed that both the average well color development of all carbon sources and the functional diversity index increased with the liming rate in the tea orchards and the forest, but decreased in the wasteland. The phospholipid fatty acid (PLFA) analysis showed that the structural diversity index of soil microbial community increased with the liming rate in all the tea orchards, the wasteland and the forest. Lime application also increased the soil-bacterial PLFA content in all the soils. Soil fungal and actinomycete PLFAs in the tea orchards showed an increasing trend from 0 to 3.2 g CaCO 3 /kg application and then a decreasing trend from 3.2 to 6.4 g CaCO 3 /kg application. The principal component analysis of BIOLOG and PLFA data suggested that lime application had a significant effect on soil microbial community structure, and land use had a greater effect on soil microbial community structure compared to lime application.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(No.20130101110127)the Project of Zhejiang Key Scientific and Technological Innovation Team(No.2010R50039),China
文摘It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative poly- merase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was signif- icantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of mi- crobial communities and the abundance of genes involved in the nitrogen cycle.
文摘针对果、茶园规模不断扩张并逐渐向智能农业机械化发展的趋势以及常用道路语义分割数据集缺少果、茶园道路场景等问题,将语义分割技术应用到部分果、茶园道路中,以实现对果、茶园道路的像素级分割。以道路、人和车为分类对象,建立果、茶园道路场景图像数据集(包括6032张图像),将数据集按照9∶1比例随机划分为训练集(5429张图像)和测试集(603张图像)。以PSPNet(pyramid scene parsing network,金字塔场景解析网络)分割模型为基础进行优化,构建MS-PSPNet语义分割模型;训练结果显示,MS-PSPNet模型的MIoU(mean intersection over union,平均交并比)为83.41%,FPS(frames per second,每秒传输帧数)为22.31。将MS-PSPNet模型应用在果、茶园不同道路条件和光照强度下进行现场试验,并进行准确度评估,结果显示,MS-PSPNet模型类别MPA(mean pixel accuracy),像素准确率均超过92%,MIoU在除非硬化道路条件情况均超过91%,表明MS-PSPNet模型在果、茶园道路识别中具有较好的有效性和适用性。