Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity ag...Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.展开更多
The interaction between host circadian rhythm and gut microbes through the gut-brain axis provides new clues for tea polyphenols to improve host health.Our present research showed that oolong tea polyphenols(OTP)impro...The interaction between host circadian rhythm and gut microbes through the gut-brain axis provides new clues for tea polyphenols to improve host health.Our present research showed that oolong tea polyphenols(OTP)improved the structural disorder of the intestinal flora caused by continuous darkness,thereby modulating the production of metabolites related to pyruvate metabolism,glycolysis/gluconeogenesis,and tryptophan metabolism to alleviate the steady-state imbalance.After fecal microbiota transplantation from the OTP group,the single-cell transcriptomic analysis revealed that OTP significantly increased the number of hypothalamus cell clusters,up-regulated the number of astrocytes and fibroblasts,and enhanced the expression of circadian rhythm genes Cry2,Per3,Bhlhe41,Nr1d1,Nr1d2,Dbp and Rorb in hypothalamic cells.Our results confirmed that OTP can actively improve the intestinal environmental state as well as internal/peripheral circadian rhythm disorders and cognitive impairment,with potential prebiotic functional characteristics to notably contribute to host health.展开更多
The catechin Epigallocatechin-3-O-Gallate (EGCG) which is found in of Green Tea extracts (GTE), displays a variety of microbicidal properties. It is largely believed that EGCG inhibits the growth of cariogenic and per...The catechin Epigallocatechin-3-O-Gallate (EGCG) which is found in of Green Tea extracts (GTE), displays a variety of microbicidal properties. It is largely believed that EGCG inhibits the growth of cariogenic and periodontopathic bacteria. Objective: In this paper we compared the inhibitory activity of EGCG and a commercial GTE on the growth of Veillonella parvula. Chlorhexidine was used as positive control. Methodology: V. parvula ATCC 10790 and a clinical isolate obtained from a periodontal disease patient were cultured in the presence of EGCG or a commercial GTE, and the measurements of bacterial growth inhibition were compared to the values obtained with 0.12 and 0.2% chlorhexidine. Results: Chlorhexidine inhibited bacterial growth, however in contrast to a previous report, neither EGCG nor the GTE showed any effect on bacterial growth. Conclusions: The data show and confirm that chlorhexidine is a growth inhibitor of V. parvula while EGCG and GTE do not display such effect.展开更多
[Objective]This paper was to investigate the action targets and pathways of tea polyphenols in alleviating heat stress-induced injury by using network pharmacological analysis and an H9C2 cell model.[Method]First,the ...[Objective]This paper was to investigate the action targets and pathways of tea polyphenols in alleviating heat stress-induced injury by using network pharmacological analysis and an H9C2 cell model.[Method]First,the corresponding targets of tea polyphenols were obtained from the PubChem database.Then,the core targets were screened based on topological parameters.The relevant metabolism pathways of tea polyphenols related to diseases were identified through GO functional annotation and KECG signaling pathway enrichment.Moreover,common targets for thermal injury and targets of tea polyphenols were obtained.Then,GO functional annotation was performed to explore the pathway of tea polyphenols in alleviating heat stress damage.H9C2 cells were cultured at 42 C to construct the heat stress model,and the cells were treated with 10μg/mL tea polyphenols.The key genes were confirmed using RT-PCR technology.[Result]The study yielded 364 targets corresponding to tea polyphenols,including 68 core targets.These targets are related to various biological processes such as involve oxidative stress,cancer,lipopolysaccharide-mediated signaling pathways,antiviral responses,regulation of cellular response to heat,apoptosis,and cellular lipid metabolic metabolism.Tea polyphe nols alleviate thermal damage by targeting BCL2,HSP90AA1,HSPA1A,JUN,MAPK1,NFKB1,NFKBIA,NOS3,and TP53.Moreover,10 mg/L tea polyphenols were found to upregulate the transcription levels of Hsp70,HO-1,NQ-O1,Nrf2,and MAPKI,and the transcription levels of Bax/Bcl2,p38,and JNK were downregulated to alleviate the heat stress-induced injury.[Conclusion]Tea polyphenols may enhance the antioxidant ability of H9C2 cells and inhibit cell apoptosis,thereby reducing heat stress injury.展开更多
[Objectives]To explore the change rule of polyphenol content and antioxidant activity of coarse old leaves of Yingshan Yunwu Tea in the process of human digestion.[Methods]The coarse and old leaves of Yunwu tea in Yin...[Objectives]To explore the change rule of polyphenol content and antioxidant activity of coarse old leaves of Yingshan Yunwu Tea in the process of human digestion.[Methods]The coarse and old leaves of Yunwu tea in Yingshan,Huanggang,Hubei Province were selected as the research object,and their digestion in vitro was simulated.The total polyphenol content was determined by Folin-phenol reagent colorimetric method,and the DPPH radical scavenging activity and total antioxidant activity were determined.[Results]After simulated gastrointestinal digestion in vitro,the polyphenol content and antioxidant activity of coarse old leaf tea soup showed a downward trend.After gastrointestinal digestion,the polyphenol content in tea infusion separately decreased by 31.8%and 8.5%;the scavenging rate of DPPH free radical was 97%before digestion,decreased to 92%after gastric digestion and 65%after intestinal digestion,which decreased by 5%and 27%,respectively;after gastrointestinal digestion,the total antioxidant capacity of tea soup decreased by 4.7%and 3.1%,respectively.[Conclusions]This study provided a reference for the development and application of coarse old leaves of Yingshan Yunwu tea,and provided a reference for the nutritional value evaluation and comprehensive utilization of coarse old leaves,so as to make the best use of coarse tea leaves and reduce the waste of resources.展开更多
Objective:This study aimed to explore the effects of tea polyphenols(TP)on inflammation of orbital fibroblasts in Graves’ophthalmopathy(GO)and to provide new ideas for GO treatment.Methods:Primary orbital fibroblasts...Objective:This study aimed to explore the effects of tea polyphenols(TP)on inflammation of orbital fibroblasts in Graves’ophthalmopathy(GO)and to provide new ideas for GO treatment.Methods:Primary orbital fibroblasts were extracted from orbital adipose/connective tissues of patients with and without GO.Real-time quantitative PCR(RT-qPCR)was used to detect the expression of interleukin(IL)-6,IL-1β,and monocyte chemotactic protein(MCP)-1 in non-GO and GO orbital fibroblasts.The CCK-8 assay was used to determine the appropriate concentration of TP for subsequent experiments.RT-qPCR and enzyme-linked immunosorbent assay(ELISA)were performed to investigate the effects of TP on lipopolysaccharide(LPS)-induced production of inflammatory cytokines.Nuclear factor-κB(NF-κB)expression was measured using Western blotting analysis.NOD-like receptor 3(NLRP3)expression was detected using both Western blotting analysis and immunofluorescence staining.Results:The mRNA levels of IL-6,IL-1β,and MCP-1 in GO orbital fibroblasts were significantly higher than those in non-GO cells.TP treatment significantly inhibited LPS-induced production of inflammatory factors,including IL-6,IL-1β,and MCP-1.TP also inhibited the expression levels of NF-κB and NLRP3.Inflammation in the GO orbital fibroblasts was higher than that in non-GO cells.TP inhibited the production of inflammatory cytokines in GO orbital fibroblasts in vitro through the NF-κB/NLRP3 pathway.Conclusion:These findings suggest that TP may have a potential role in GO treatment.展开更多
This study was carried out to characterize total residual catechins and their fractions, polyphenolic contents and antioxidant activities of black teas enriched with high levels of theaflavin-3,3’-digallate. The made...This study was carried out to characterize total residual catechins and their fractions, polyphenolic contents and antioxidant activities of black teas enriched with high levels of theaflavin-3,3’-digallate. The made teas were processed from eleven selected cultivars. A comparative study was carried out between the processed teas and those from commercially grown Kenyan cultivars in relation to the above chemical parameters. A correlation matrix analysis was also conducted to find out whether a relationship existed between the antioxidant activities and the said chemical parameters. The total residual catechins were found to range between 3.10% and 8.08%. The total polyphenol levels varied between 19.00% and 28.90%, while the antioxidant activities of the teas ranged from 82.70% to 91.70%. There was a significant p < 0.001 correlation between the antioxidant activity and total polyphenols (r = 0.8948). There was also a high correlation p < 0.001 between the antioxidant activity and total catechins (r = 0.8878). Out of the four catechin fractions, the antioxidant activity correlated most with EGCG (r = 0.8774). The total polyphenolic contents and antioxidant activities for most of the cultivars were comparable to those of the green tea reference standard. From the figures obtained, it can be concluded that the most of the newly developed black teas of the selected cultivars have higher quality and enhanced antioxidant activities and that they can be recommended for commercial production.展开更多
Lipophilic tea polyphenols (LTP) were prepared by catalytic esterification of green tea polyphenols (GTP) with hexadecanoyl chloride. A novel long chain acyl derivative of epigallocatechin 3 o gallate (EGCG) ...Lipophilic tea polyphenols (LTP) were prepared by catalytic esterification of green tea polyphenols (GTP) with hexadecanoyl chloride. A novel long chain acyl derivative of epigallocatechin 3 o gallate (EGCG) was first isolated from purification of LTP by high speed countercurrent chromatography (HSCCC) using a solvent system composed of n hexane ethyl acetate methanol water (1:1:1:1, v/v). The molecular structure of the acyl derivative, Epigallocatechin 3 O gallate 4′ O hexadecanate , was elucidated by means of elemental analysis, IR, 1H NMR and MS spectra.展开更多
The aim of this research was to explore the effect of fixation,rolling,and drying processing technology on the retention rate of green tea catechins components and tea polyphenol.Different fixation processes(rotary dr...The aim of this research was to explore the effect of fixation,rolling,and drying processing technology on the retention rate of green tea catechins components and tea polyphenol.Different fixation processes(rotary drumfiring,microwave,steam-blasting),rolling process(weight of rolling,gently press rolling and traditional rolling),drying process(stove drying,roasting dehydration,baked fried drying) were adopted.The effect of different tea processing technology on the retention rate of catechins component and tea polyphenol was analyzed.It showed that the microwave fixation process,gently press rolling process,baked fried dry process were beneficial to keep high levels of EGCG,C,EGC,EC,ECG.展开更多
Membrane pollution caused by separating oily wastewater is a big challenge for membrane separation technology.Recently,plant-/mussel-inspired interface chemistry has received more and more attention.Herein,a high anti...Membrane pollution caused by separating oily wastewater is a big challenge for membrane separation technology.Recently,plant-/mussel-inspired interface chemistry has received more and more attention.Herein,a high antifouling poly(vinylidene fluoride)(PVDF)membrane,coated with tea polyphenols(TP,extracted from green tea)and 3-amino-propyl-triethoxysilane(APTES),was developed to purify oil-inwater emulsions.ATR-FTIR,XPS and SEM were used to demonstrate the evolution of surface biomimetic hybrid coatings.The performances of the developed membranes were investigated by pure water permeability and oil rejection for various surfactant-stabilized oil-in-water emulsions.The experimental results revealed that the membrane deposited with a mass ratio of 0.1/0.2 exhibited ultrahigh pure water permeability(14570 L·m^(-2)·h^(-1)·bar^(-1),1 bar=0.1 MPa)and isooctane-in-water emulsion permeability(5391 L·m^(-2)·h^(-1)·bar^(-1))with high separation efficiency(>98.9%).Even treated in harsh environment(acidic,alkaline and saline)for seven days,the membrane still maintained considerable underwater oleophobic property(148°–153°).The fabricated plant-inspired biomimetic hybrid membranes with excellent performances light a broad application prospect in the field of oily wastewater treatment.展开更多
The intensity of the bitterness of catechins increases with increased concentration, but the taste palatability decreased in green tea extract. The aim of this study was to investigate whether a blend of tea leaf part...The intensity of the bitterness of catechins increases with increased concentration, but the taste palatability decreased in green tea extract. The aim of this study was to investigate whether a blend of tea leaf particles of various sizes would result in a good balance between catechin content and appreciable taste. The control is common tea (CT) with 6 - 10 mm long leaves. Blend tea (BT) was prepared by mixing 5 mm and 120 - 130 mm long tea leaves in a ratio of 3:2. The catechin content of hot water extracts was analyzed by HPLC, and the sensory test was conducted with 99 volunteers. In BT, the total catechin content was significantly higher than that in CT. The sensory test results revealed that BT was less bitter and had more preferable color than CT. More catechins were extracted from BT, but it tasted less bitter. Thus, the recalibration of the tea leaf particle size can result in good balance between catechin content and palatability.展开更多
In recent years, the incidence of neurodegenerative diseases, mainly Alzheimer’s disease, Parkinson’s disease, vascular dementia, and cerebral ischemia, has been rising gradually, which has a serious impact on the p...In recent years, the incidence of neurodegenerative diseases, mainly Alzheimer’s disease, Parkinson’s disease, vascular dementia, and cerebral ischemia, has been rising gradually, which has a serious impact on the physiological state and quality of life of human beings in old age, and the current clinical drugs are unsatisfactory in terms of therapeutic efficacy and healing, which has made this kind of diseases become a social medical problem. Tea polyphenols are the main functional components of tea and have great potential in neuroprotection. In this paper, we review the research on tea polyphenols in neurodegenerative diseases, with the aim of providing a new entry point for the treatment of neurodegenerative diseases.展开更多
BACKGROUND Di(2-ethylhexyl)phthalate(DEHP)is a common plasticizer known to cause liver injury.Green tea is reported to exert therapeutic effects on heavy metal exposureinduced organ damage.However,limited studies have...BACKGROUND Di(2-ethylhexyl)phthalate(DEHP)is a common plasticizer known to cause liver injury.Green tea is reported to exert therapeutic effects on heavy metal exposureinduced organ damage.However,limited studies have examined the therapeutic effects of green tea polyphenols(GTPs)on DEHP-induced liver damage.AIM To evaluate the molecular mechanism underlying the therapeutic effects of GTPs on DEHP-induced liver damage.METHODS C57BL/6J mice were divided into the following five groups:Control,model[DEHP(1500 mg/kg bodyweight)],treatment[DEHP(1500 mg/kg bodyweight)+GTP(70 mg/kg bodyweight),oil,and GTP(70 mg/kg bodyweight)]groups.After 8 wk,the liver function,blood lipid profile,and liver histopathology were examined.Differentially expressed micro RNAs(miRNAs)and mRNAs in the liver tissues were examined using high-throughput sequencing.Additionally,functional enrichment analysis and immune infiltration prediction were performed.The miRNA-mRNA regulatory axis was elucidated using the starBase database.Protein expression was evaluated using immunohistochemistry.RESULTS GTPs alleviated DHEP-induced liver dysfunction,blood lipid dysregulation,fatty liver disease,liver fibrosis,and mitochondrial and endoplasmic reticulum lesions in mice.The infiltration of macrophages,mast cells,and natural killer cells varied between the model and treatment groups.mmu-miR-141-3p(a differentially expressed miRNA),Zcchc24(a differentially expressed mRNA),and Zcchc24(a differentially expressed protein)constituted the miRNA-mRNA-protein regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage in mice.CONCLUSION This study demonstrated that GTPs mitigate DEHP-induced liver dysfunction,blood lipid dysregulation,fatty liver disease,and partial liver fibrosis,and regulate immune cell infiltration.Additionally,an important miRNAmRNA-protein molecular regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage was elucidated.展开更多
In order to effectively control the drug-release rate of medical textiles,biodegradable polycaprolactone(PCL) and polyglycolic acid(PGA) were blended at various mass ratios to prepare composite masterbatches for medic...In order to effectively control the drug-release rate of medical textiles,biodegradable polycaprolactone(PCL) and polyglycolic acid(PGA) were blended at various mass ratios to prepare composite masterbatches for medical textiles.The surface morphology and the chemical structure of the masterbatches were analyzed.The crystallization,mass losses,strengths and drug-release rates of the composite masterbatches at different PCL/PGA mass ratios were explored.The results show that the degradation rate of the PGA carrier is obvious higher than that of the PCL carrier,and PCL,PGA and the tea polyphenol(TP) drug just physically mix without chemical reaction.During the degradation,the strength of the composite masterbatches gradually decreases.In addition,the drug-release rates of composite masterbatches at different mass ratios are different,and the more the PGA in the composite masterbatches,the faster the drug release of the composite masterbatches.The drug-release rate of the composite masterbatches can be controlled by adjusting the contents of PCL and PGA.展开更多
Tea polyphenols(TP)is a class of polyhydroxy compounds isolated from tea.Modern biological and medical studies have shown that TP has many pharmacological activities,such as anti-inflammatory,anti-virus,anti-oxidation...Tea polyphenols(TP)is a class of polyhydroxy compounds isolated from tea.Modern biological and medical studies have shown that TP has many pharmacological activities,such as anti-inflammatory,anti-virus,anti-oxidation,anti-tumor and anti-radiation.Furthermore,these substances can be used as a potential drug component to positively guide the occurrence and development of certain diseases.Furthermore,because of the activities of TP,such as anti-oxidation and anti-bacteria,it can be applied in food preservation,color preservation,deodorization,and treatment of food processing by-products.Based on the research progress of TP in recent years,this paper summarizes the pharmacological activities of TP and expounds on its application potential in the field of food.In order to provide a theoretical reference for the research,development and utilization of TP.展开更多
AIM To study the protective effects of tea polyphenol (TP) on cerebral ischemia reperfusion injury in rats and its scavenging oxygen free radical(OFR) activities and antilipid peroxidation in vitro . METHODS Cer...AIM To study the protective effects of tea polyphenol (TP) on cerebral ischemia reperfusion injury in rats and its scavenging oxygen free radical(OFR) activities and antilipid peroxidation in vitro . METHODS Cerebral ischemia reperfusion injury was produced by bilateral ligation of the common carotid arteries with vagus nerves and reperfusion for 45 min. The mitochondrial lipid peroxidation of rat brain induced by oxygen free radical was measured by thiobarbituric acid spectrophotometry. Superoxide anion (O 2) from xanthine xanthine oxidase system and hydroxyl radical (·OH) from Fe 2+ -H 2O 2 system were determined with spectrophotometry. RESULTS During Cerebral ischemia reperfusion,TP improved the activities of superoxide dismutase ( P 【0 05), GSH peroxidase( P 【0 01) and catalase( P 【0 01), while decreasing the maiondialdchyde content in the brain( P 【0 05) and brain water content ( P 【0 01). Tea polyphenol possessed significantly scavenging effects on ·OH produced by Fenton reaction and O 2 produced by xanthine xanthine oxidase system (the IC 50 were 2 2 mmol·L -1 and 1 9 mmol·L -1 respectively). Tea polyphenol could significant inhibit the lipid peroxidation of cerbral mitochondrial membrane induced by ·OH in a concentration dependent manner. CONCLUSION The results indicate that tea polyphenol could protect the injury on cerebral ischemia reperfusion in rats for OFR, these effects may be related to its scavenging effects on oxygen free radicals and antilipid peroxidant.展开更多
[Objective] This study aimed to analyze the difference in the contents of gallic acid and catechins of tea resources from Yunnan Province. [Method] By using high performance liquid chromatography (HPLC), the content...[Objective] This study aimed to analyze the difference in the contents of gallic acid and catechins of tea resources from Yunnan Province. [Method] By using high performance liquid chromatography (HPLC), the contents of gallic acid (GA), catechins (C), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin gallate (EGCG) of 121 tea germplasms from the China National Germplasm Tea Repositories (CNGTR) at the Tea Research Institute of Yunnan Academy of Agricultural Sciences (TRIYAAS) were measured. [Result] The content of GA ranged from 0.210% to 1.902%, with an average of 0.834%, explaining rela- tively low GA content among tea germplasms. The content of C ranged from 0.069% to 8.865%, with an average of 1.916%. The content of EC ranged from 0.126% to 2.865%, with an average of 1.112%. The content of EGC ranged from 0.00% to 3.709%, with an average of 0.954%. The content of ECG ranged from 0.739% to 8.957%, with an average of 4.063%. The content of EGCG ranged from 0.819% to 11.77%, with an average of 5.939%. The content of total C ranged from 6.354% to 22.654%, with an average of 14.042%. [Conclusion] There was relatively big difference of catechin contents among different tea resources, indicating that there was plentiful biodiversity of Yunnan tea germplasms. At the same time, three tea germplasms with high epigallocatechin gallate content (≥10%) was selected preliminarily, which would provide important materials for breeding tea cultivars with high EGCG content in the future.展开更多
[Objective] We aimed to investigate the differences of polyphenols content in Anxi Tieguanyin tea among different seasons and relationship between polyphenols and tea quality.[Method] The content of total polyphenols ...[Objective] We aimed to investigate the differences of polyphenols content in Anxi Tieguanyin tea among different seasons and relationship between polyphenols and tea quality.[Method] The content of total polyphenols and main phenolic compounds was analyzed by spectrophotometry and HPLC and the sensory quality assessment was carried out.[Result] There were significant differences in the content of polyphenols in Anxi Tieguanyin tea among different seasons.The summer tea had a higher content of polyphenols and ester type catechins and a heavier undesirable taste with more bitterness and astringency than spring tea and autumn tea with lower quality in general.The flavonol content of spring and autumn tea was significantly higher and the color of tea soup was better.[Conclusion] This study provided a basis for the quality improvement of summer tea by regulating the content of total polyphenols and provided a basic data for chemical analysis of Oolong tea.展开更多
Teapolyphenols are the generic term of polyphenols in tea.Tea polyphenols are non-toxic and odorless with high oxidation resistance.Heat stress causes oxidative stress,which impairs the capacity of antioxidant defense...Teapolyphenols are the generic term of polyphenols in tea.Tea polyphenols are non-toxic and odorless with high oxidation resistance.Heat stress causes oxidative stress,which impairs the capacity of antioxidant defense system and immunity,thereby seriously affecting the production performance of animals.Teapolyphenols could reduce heatstress response in animals by scavenging harmful free radicals and increasing the activities of antioxidant enzymes.展开更多
Objective Elevation of reactive oxygen species (ROS), especially the level of superoxide is a key event in many forms of cardiovascular diseases. To study the mechanism of tea polyphenols against cardiovascular diseas...Objective Elevation of reactive oxygen species (ROS), especially the level of superoxide is a key event in many forms of cardiovascular diseases. To study the mechanism of tea polyphenols against cardiovascular diseases, we observed the expressions of ROS-related enzymes in endothelial cells. Methods Tea polyphenols were co-incubated with bovine carotid artery endothelial cells (BCAECs) in vitro and intracellular NADPH oxidase subunits p22phox and p67phox, SOD-1, and catalase protein were detected using Western blot method. Results Tea polyphenols of 0.4 ug/mL and 4.0 ug/mL (from either green tea or black tea) down-regulated NADPH oxidase p22phox and p67phox expressions in a dose-negative manner (P<0.05), and up-regulated the expressions of catalase (P<0.05). Conclusions Tea polyphenols regulate the enzymes involved in ROS production and elimination in endothelial cells, and may be beneficial to the prevention of endothelial cell dysfunction and the development of cardiovascular diseases.展开更多
基金supported by National Natural Science Foundation of China(31972021)R&D Projects in Key Areas of Guangdong Province(2019B020212003)+4 种基金the Science and Technology Program of Guangzhou,China(202206010177)Guangdong key research and development program(2021B0202060001)Foshan and agricultural academy cooperation projectGuangdong Modern Agriculture project(2022KJ117)Aquatic Products Center Project of GAAS。
文摘Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.
基金sponsored by the Ningbo Natural Science Foundation(2021J107)。
文摘The interaction between host circadian rhythm and gut microbes through the gut-brain axis provides new clues for tea polyphenols to improve host health.Our present research showed that oolong tea polyphenols(OTP)improved the structural disorder of the intestinal flora caused by continuous darkness,thereby modulating the production of metabolites related to pyruvate metabolism,glycolysis/gluconeogenesis,and tryptophan metabolism to alleviate the steady-state imbalance.After fecal microbiota transplantation from the OTP group,the single-cell transcriptomic analysis revealed that OTP significantly increased the number of hypothalamus cell clusters,up-regulated the number of astrocytes and fibroblasts,and enhanced the expression of circadian rhythm genes Cry2,Per3,Bhlhe41,Nr1d1,Nr1d2,Dbp and Rorb in hypothalamic cells.Our results confirmed that OTP can actively improve the intestinal environmental state as well as internal/peripheral circadian rhythm disorders and cognitive impairment,with potential prebiotic functional characteristics to notably contribute to host health.
文摘The catechin Epigallocatechin-3-O-Gallate (EGCG) which is found in of Green Tea extracts (GTE), displays a variety of microbicidal properties. It is largely believed that EGCG inhibits the growth of cariogenic and periodontopathic bacteria. Objective: In this paper we compared the inhibitory activity of EGCG and a commercial GTE on the growth of Veillonella parvula. Chlorhexidine was used as positive control. Methodology: V. parvula ATCC 10790 and a clinical isolate obtained from a periodontal disease patient were cultured in the presence of EGCG or a commercial GTE, and the measurements of bacterial growth inhibition were compared to the values obtained with 0.12 and 0.2% chlorhexidine. Results: Chlorhexidine inhibited bacterial growth, however in contrast to a previous report, neither EGCG nor the GTE showed any effect on bacterial growth. Conclusions: The data show and confirm that chlorhexidine is a growth inhibitor of V. parvula while EGCG and GTE do not display such effect.
基金Supported by National Natural Science Foundation of China(32302919,32302918)Taishan Industrial Experts Program(tscx202306046)+1 种基金Key R&D Program Rural Revitalization Project of Shandong Province(2023TZXD083)Science and Technology Cooperation Project of Shandong and Chongqing(2022LYXZ030)。
文摘[Objective]This paper was to investigate the action targets and pathways of tea polyphenols in alleviating heat stress-induced injury by using network pharmacological analysis and an H9C2 cell model.[Method]First,the corresponding targets of tea polyphenols were obtained from the PubChem database.Then,the core targets were screened based on topological parameters.The relevant metabolism pathways of tea polyphenols related to diseases were identified through GO functional annotation and KECG signaling pathway enrichment.Moreover,common targets for thermal injury and targets of tea polyphenols were obtained.Then,GO functional annotation was performed to explore the pathway of tea polyphenols in alleviating heat stress damage.H9C2 cells were cultured at 42 C to construct the heat stress model,and the cells were treated with 10μg/mL tea polyphenols.The key genes were confirmed using RT-PCR technology.[Result]The study yielded 364 targets corresponding to tea polyphenols,including 68 core targets.These targets are related to various biological processes such as involve oxidative stress,cancer,lipopolysaccharide-mediated signaling pathways,antiviral responses,regulation of cellular response to heat,apoptosis,and cellular lipid metabolic metabolism.Tea polyphe nols alleviate thermal damage by targeting BCL2,HSP90AA1,HSPA1A,JUN,MAPK1,NFKB1,NFKBIA,NOS3,and TP53.Moreover,10 mg/L tea polyphenols were found to upregulate the transcription levels of Hsp70,HO-1,NQ-O1,Nrf2,and MAPKI,and the transcription levels of Bax/Bcl2,p38,and JNK were downregulated to alleviate the heat stress-induced injury.[Conclusion]Tea polyphenols may enhance the antioxidant ability of H9C2 cells and inhibit cell apoptosis,thereby reducing heat stress injury.
基金Supported by High-level Training Project of Huanggang Normal University in 2021(202108504).
文摘[Objectives]To explore the change rule of polyphenol content and antioxidant activity of coarse old leaves of Yingshan Yunwu Tea in the process of human digestion.[Methods]The coarse and old leaves of Yunwu tea in Yingshan,Huanggang,Hubei Province were selected as the research object,and their digestion in vitro was simulated.The total polyphenol content was determined by Folin-phenol reagent colorimetric method,and the DPPH radical scavenging activity and total antioxidant activity were determined.[Results]After simulated gastrointestinal digestion in vitro,the polyphenol content and antioxidant activity of coarse old leaf tea soup showed a downward trend.After gastrointestinal digestion,the polyphenol content in tea infusion separately decreased by 31.8%and 8.5%;the scavenging rate of DPPH free radical was 97%before digestion,decreased to 92%after gastric digestion and 65%after intestinal digestion,which decreased by 5%and 27%,respectively;after gastrointestinal digestion,the total antioxidant capacity of tea soup decreased by 4.7%and 3.1%,respectively.[Conclusions]This study provided a reference for the development and application of coarse old leaves of Yingshan Yunwu tea,and provided a reference for the nutritional value evaluation and comprehensive utilization of coarse old leaves,so as to make the best use of coarse tea leaves and reduce the waste of resources.
基金supported by the National Natural Science Foundation of China(No.82160206 and No.81360152),the Natural Science Foundation of Guangxi Province(No.2018GXNSFAA281234),2019 Guangxi One Thousand Young and Middle-Aged College and University Backbone Teachers Cultivation Program and“Medical Excellence Award”Funded by the Creative Research Development Grant from the First Affiliated Hospital of Guangxi Medical University.
文摘Objective:This study aimed to explore the effects of tea polyphenols(TP)on inflammation of orbital fibroblasts in Graves’ophthalmopathy(GO)and to provide new ideas for GO treatment.Methods:Primary orbital fibroblasts were extracted from orbital adipose/connective tissues of patients with and without GO.Real-time quantitative PCR(RT-qPCR)was used to detect the expression of interleukin(IL)-6,IL-1β,and monocyte chemotactic protein(MCP)-1 in non-GO and GO orbital fibroblasts.The CCK-8 assay was used to determine the appropriate concentration of TP for subsequent experiments.RT-qPCR and enzyme-linked immunosorbent assay(ELISA)were performed to investigate the effects of TP on lipopolysaccharide(LPS)-induced production of inflammatory cytokines.Nuclear factor-κB(NF-κB)expression was measured using Western blotting analysis.NOD-like receptor 3(NLRP3)expression was detected using both Western blotting analysis and immunofluorescence staining.Results:The mRNA levels of IL-6,IL-1β,and MCP-1 in GO orbital fibroblasts were significantly higher than those in non-GO cells.TP treatment significantly inhibited LPS-induced production of inflammatory factors,including IL-6,IL-1β,and MCP-1.TP also inhibited the expression levels of NF-κB and NLRP3.Inflammation in the GO orbital fibroblasts was higher than that in non-GO cells.TP inhibited the production of inflammatory cytokines in GO orbital fibroblasts in vitro through the NF-κB/NLRP3 pathway.Conclusion:These findings suggest that TP may have a potential role in GO treatment.
文摘This study was carried out to characterize total residual catechins and their fractions, polyphenolic contents and antioxidant activities of black teas enriched with high levels of theaflavin-3,3’-digallate. The made teas were processed from eleven selected cultivars. A comparative study was carried out between the processed teas and those from commercially grown Kenyan cultivars in relation to the above chemical parameters. A correlation matrix analysis was also conducted to find out whether a relationship existed between the antioxidant activities and the said chemical parameters. The total residual catechins were found to range between 3.10% and 8.08%. The total polyphenol levels varied between 19.00% and 28.90%, while the antioxidant activities of the teas ranged from 82.70% to 91.70%. There was a significant p < 0.001 correlation between the antioxidant activity and total polyphenols (r = 0.8948). There was also a high correlation p < 0.001 between the antioxidant activity and total catechins (r = 0.8878). Out of the four catechin fractions, the antioxidant activity correlated most with EGCG (r = 0.8774). The total polyphenolic contents and antioxidant activities for most of the cultivars were comparable to those of the green tea reference standard. From the figures obtained, it can be concluded that the most of the newly developed black teas of the selected cultivars have higher quality and enhanced antioxidant activities and that they can be recommended for commercial production.
文摘Lipophilic tea polyphenols (LTP) were prepared by catalytic esterification of green tea polyphenols (GTP) with hexadecanoyl chloride. A novel long chain acyl derivative of epigallocatechin 3 o gallate (EGCG) was first isolated from purification of LTP by high speed countercurrent chromatography (HSCCC) using a solvent system composed of n hexane ethyl acetate methanol water (1:1:1:1, v/v). The molecular structure of the acyl derivative, Epigallocatechin 3 O gallate 4′ O hexadecanate , was elucidated by means of elemental analysis, IR, 1H NMR and MS spectra.
文摘The aim of this research was to explore the effect of fixation,rolling,and drying processing technology on the retention rate of green tea catechins components and tea polyphenol.Different fixation processes(rotary drumfiring,microwave,steam-blasting),rolling process(weight of rolling,gently press rolling and traditional rolling),drying process(stove drying,roasting dehydration,baked fried drying) were adopted.The effect of different tea processing technology on the retention rate of catechins component and tea polyphenol was analyzed.It showed that the microwave fixation process,gently press rolling process,baked fried dry process were beneficial to keep high levels of EGCG,C,EGC,EC,ECG.
基金supported by Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(TSBICIP-KJGG-003)Qinglan Plan of Jiangsu Education Department and the National Key Research and Development Program of China(2017YFD0400402).
文摘Membrane pollution caused by separating oily wastewater is a big challenge for membrane separation technology.Recently,plant-/mussel-inspired interface chemistry has received more and more attention.Herein,a high antifouling poly(vinylidene fluoride)(PVDF)membrane,coated with tea polyphenols(TP,extracted from green tea)and 3-amino-propyl-triethoxysilane(APTES),was developed to purify oil-inwater emulsions.ATR-FTIR,XPS and SEM were used to demonstrate the evolution of surface biomimetic hybrid coatings.The performances of the developed membranes were investigated by pure water permeability and oil rejection for various surfactant-stabilized oil-in-water emulsions.The experimental results revealed that the membrane deposited with a mass ratio of 0.1/0.2 exhibited ultrahigh pure water permeability(14570 L·m^(-2)·h^(-1)·bar^(-1),1 bar=0.1 MPa)and isooctane-in-water emulsion permeability(5391 L·m^(-2)·h^(-1)·bar^(-1))with high separation efficiency(>98.9%).Even treated in harsh environment(acidic,alkaline and saline)for seven days,the membrane still maintained considerable underwater oleophobic property(148°–153°).The fabricated plant-inspired biomimetic hybrid membranes with excellent performances light a broad application prospect in the field of oily wastewater treatment.
文摘The intensity of the bitterness of catechins increases with increased concentration, but the taste palatability decreased in green tea extract. The aim of this study was to investigate whether a blend of tea leaf particles of various sizes would result in a good balance between catechin content and appreciable taste. The control is common tea (CT) with 6 - 10 mm long leaves. Blend tea (BT) was prepared by mixing 5 mm and 120 - 130 mm long tea leaves in a ratio of 3:2. The catechin content of hot water extracts was analyzed by HPLC, and the sensory test was conducted with 99 volunteers. In BT, the total catechin content was significantly higher than that in CT. The sensory test results revealed that BT was less bitter and had more preferable color than CT. More catechins were extracted from BT, but it tasted less bitter. Thus, the recalibration of the tea leaf particle size can result in good balance between catechin content and palatability.
文摘In recent years, the incidence of neurodegenerative diseases, mainly Alzheimer’s disease, Parkinson’s disease, vascular dementia, and cerebral ischemia, has been rising gradually, which has a serious impact on the physiological state and quality of life of human beings in old age, and the current clinical drugs are unsatisfactory in terms of therapeutic efficacy and healing, which has made this kind of diseases become a social medical problem. Tea polyphenols are the main functional components of tea and have great potential in neuroprotection. In this paper, we review the research on tea polyphenols in neurodegenerative diseases, with the aim of providing a new entry point for the treatment of neurodegenerative diseases.
基金Guangdong Provincial Department of Science and Technology,Science and Technology Plan Project,Journal of Jinan University High-Level Science and Technology Journal Construction Project,No.2021B121020012Guangdong Provincial Administration of Traditional Chinese Medicine,Traditional Chinese Medicine Research Project,No.20213005.
文摘BACKGROUND Di(2-ethylhexyl)phthalate(DEHP)is a common plasticizer known to cause liver injury.Green tea is reported to exert therapeutic effects on heavy metal exposureinduced organ damage.However,limited studies have examined the therapeutic effects of green tea polyphenols(GTPs)on DEHP-induced liver damage.AIM To evaluate the molecular mechanism underlying the therapeutic effects of GTPs on DEHP-induced liver damage.METHODS C57BL/6J mice were divided into the following five groups:Control,model[DEHP(1500 mg/kg bodyweight)],treatment[DEHP(1500 mg/kg bodyweight)+GTP(70 mg/kg bodyweight),oil,and GTP(70 mg/kg bodyweight)]groups.After 8 wk,the liver function,blood lipid profile,and liver histopathology were examined.Differentially expressed micro RNAs(miRNAs)and mRNAs in the liver tissues were examined using high-throughput sequencing.Additionally,functional enrichment analysis and immune infiltration prediction were performed.The miRNA-mRNA regulatory axis was elucidated using the starBase database.Protein expression was evaluated using immunohistochemistry.RESULTS GTPs alleviated DHEP-induced liver dysfunction,blood lipid dysregulation,fatty liver disease,liver fibrosis,and mitochondrial and endoplasmic reticulum lesions in mice.The infiltration of macrophages,mast cells,and natural killer cells varied between the model and treatment groups.mmu-miR-141-3p(a differentially expressed miRNA),Zcchc24(a differentially expressed mRNA),and Zcchc24(a differentially expressed protein)constituted the miRNA-mRNA-protein regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage in mice.CONCLUSION This study demonstrated that GTPs mitigate DEHP-induced liver dysfunction,blood lipid dysregulation,fatty liver disease,and partial liver fibrosis,and regulate immune cell infiltration.Additionally,an important miRNAmRNA-protein molecular regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage was elucidated.
基金Transformation and Guidance of Scientific and Technological Achievements in Shanxi Province,China(No.202104021301053)Fundamental Research Program of Shanxi Province,China(Nos. 20210302123114 and 202203021211146)+1 种基金Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi Province,China(TSTAP)(No. 2020CG014)Open Project Program of Key Lab for Sport Shoes Upper Materials of Fujian Province,Fujian Huafeng New Material Co.,Ltd.,China(No.S SUM213)。
文摘In order to effectively control the drug-release rate of medical textiles,biodegradable polycaprolactone(PCL) and polyglycolic acid(PGA) were blended at various mass ratios to prepare composite masterbatches for medical textiles.The surface morphology and the chemical structure of the masterbatches were analyzed.The crystallization,mass losses,strengths and drug-release rates of the composite masterbatches at different PCL/PGA mass ratios were explored.The results show that the degradation rate of the PGA carrier is obvious higher than that of the PCL carrier,and PCL,PGA and the tea polyphenol(TP) drug just physically mix without chemical reaction.During the degradation,the strength of the composite masterbatches gradually decreases.In addition,the drug-release rates of composite masterbatches at different mass ratios are different,and the more the PGA in the composite masterbatches,the faster the drug release of the composite masterbatches.The drug-release rate of the composite masterbatches can be controlled by adjusting the contents of PCL and PGA.
基金supports by the Natural Science Foundation of Jilin Province(20210101220JC)Health commission project of Jilin Province(2021LC042).
文摘Tea polyphenols(TP)is a class of polyhydroxy compounds isolated from tea.Modern biological and medical studies have shown that TP has many pharmacological activities,such as anti-inflammatory,anti-virus,anti-oxidation,anti-tumor and anti-radiation.Furthermore,these substances can be used as a potential drug component to positively guide the occurrence and development of certain diseases.Furthermore,because of the activities of TP,such as anti-oxidation and anti-bacteria,it can be applied in food preservation,color preservation,deodorization,and treatment of food processing by-products.Based on the research progress of TP in recent years,this paper summarizes the pharmacological activities of TP and expounds on its application potential in the field of food.In order to provide a theoretical reference for the research,development and utilization of TP.
文摘AIM To study the protective effects of tea polyphenol (TP) on cerebral ischemia reperfusion injury in rats and its scavenging oxygen free radical(OFR) activities and antilipid peroxidation in vitro . METHODS Cerebral ischemia reperfusion injury was produced by bilateral ligation of the common carotid arteries with vagus nerves and reperfusion for 45 min. The mitochondrial lipid peroxidation of rat brain induced by oxygen free radical was measured by thiobarbituric acid spectrophotometry. Superoxide anion (O 2) from xanthine xanthine oxidase system and hydroxyl radical (·OH) from Fe 2+ -H 2O 2 system were determined with spectrophotometry. RESULTS During Cerebral ischemia reperfusion,TP improved the activities of superoxide dismutase ( P 【0 05), GSH peroxidase( P 【0 01) and catalase( P 【0 01), while decreasing the maiondialdchyde content in the brain( P 【0 05) and brain water content ( P 【0 01). Tea polyphenol possessed significantly scavenging effects on ·OH produced by Fenton reaction and O 2 produced by xanthine xanthine oxidase system (the IC 50 were 2 2 mmol·L -1 and 1 9 mmol·L -1 respectively). Tea polyphenol could significant inhibit the lipid peroxidation of cerbral mitochondrial membrane induced by ·OH in a concentration dependent manner. CONCLUSION The results indicate that tea polyphenol could protect the injury on cerebral ischemia reperfusion in rats for OFR, these effects may be related to its scavenging effects on oxygen free radicals and antilipid peroxidant.
基金Supported by National Natural Science Foundation of China(31160175)Technology Innovation Talents Project of Yunnan Province(2011CI068)+1 种基金Special Fund for National Modern Agricultural Industrial Technology System Construction(nycytx-23)Seed Preservation Project of Ministry of Agriculture(NB2012-2130135)~~
文摘[Objective] This study aimed to analyze the difference in the contents of gallic acid and catechins of tea resources from Yunnan Province. [Method] By using high performance liquid chromatography (HPLC), the contents of gallic acid (GA), catechins (C), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin gallate (EGCG) of 121 tea germplasms from the China National Germplasm Tea Repositories (CNGTR) at the Tea Research Institute of Yunnan Academy of Agricultural Sciences (TRIYAAS) were measured. [Result] The content of GA ranged from 0.210% to 1.902%, with an average of 0.834%, explaining rela- tively low GA content among tea germplasms. The content of C ranged from 0.069% to 8.865%, with an average of 1.916%. The content of EC ranged from 0.126% to 2.865%, with an average of 1.112%. The content of EGC ranged from 0.00% to 3.709%, with an average of 0.954%. The content of ECG ranged from 0.739% to 8.957%, with an average of 4.063%. The content of EGCG ranged from 0.819% to 11.77%, with an average of 5.939%. The content of total C ranged from 6.354% to 22.654%, with an average of 14.042%. [Conclusion] There was relatively big difference of catechin contents among different tea resources, indicating that there was plentiful biodiversity of Yunnan tea germplasms. At the same time, three tea germplasms with high epigallocatechin gallate content (≥10%) was selected preliminarily, which would provide important materials for breeding tea cultivars with high EGCG content in the future.
基金Supported by Program of Fujian Provincial Bureau of Quality and Technical Supervision--Applied Research about Exogenous Enzymes for Quality Improvement of Anxi Tieguanyin Tea(FJQI2009006)Program of Administration of Quality Supervision,Inspection and Quarantine--Application of Chemical Analysis and Quality Control in Traceable Identification of Anxi Tieguanyin Tea(201210075-3)~~
文摘[Objective] We aimed to investigate the differences of polyphenols content in Anxi Tieguanyin tea among different seasons and relationship between polyphenols and tea quality.[Method] The content of total polyphenols and main phenolic compounds was analyzed by spectrophotometry and HPLC and the sensory quality assessment was carried out.[Result] There were significant differences in the content of polyphenols in Anxi Tieguanyin tea among different seasons.The summer tea had a higher content of polyphenols and ester type catechins and a heavier undesirable taste with more bitterness and astringency than spring tea and autumn tea with lower quality in general.The flavonol content of spring and autumn tea was significantly higher and the color of tea soup was better.[Conclusion] This study provided a basis for the quality improvement of summer tea by regulating the content of total polyphenols and provided a basic data for chemical analysis of Oolong tea.
文摘Teapolyphenols are the generic term of polyphenols in tea.Tea polyphenols are non-toxic and odorless with high oxidation resistance.Heat stress causes oxidative stress,which impairs the capacity of antioxidant defense system and immunity,thereby seriously affecting the production performance of animals.Teapolyphenols could reduce heatstress response in animals by scavenging harmful free radicals and increasing the activities of antioxidant enzymes.
基金This study was supported in part by the Japan-China Sasakawa Medical Fellowship.
文摘Objective Elevation of reactive oxygen species (ROS), especially the level of superoxide is a key event in many forms of cardiovascular diseases. To study the mechanism of tea polyphenols against cardiovascular diseases, we observed the expressions of ROS-related enzymes in endothelial cells. Methods Tea polyphenols were co-incubated with bovine carotid artery endothelial cells (BCAECs) in vitro and intracellular NADPH oxidase subunits p22phox and p67phox, SOD-1, and catalase protein were detected using Western blot method. Results Tea polyphenols of 0.4 ug/mL and 4.0 ug/mL (from either green tea or black tea) down-regulated NADPH oxidase p22phox and p67phox expressions in a dose-negative manner (P<0.05), and up-regulated the expressions of catalase (P<0.05). Conclusions Tea polyphenols regulate the enzymes involved in ROS production and elimination in endothelial cells, and may be beneficial to the prevention of endothelial cell dysfunction and the development of cardiovascular diseases.