CuCl-catalyzed oxidative N-demethylation of arylamines proceeded in the presence of tert-butyl hydroperoxide. The one-electron transfer route of oxidative N-demethylation competed favorably with the H-atom abstraction...CuCl-catalyzed oxidative N-demethylation of arylamines proceeded in the presence of tert-butyl hydroperoxide. The one-electron transfer route of oxidative N-demethylation competed favorably with the H-atom abstraction route.展开更多
In this work,a series of acidic montmorillonite/cordierite monolithic catalysts were prepared by a coating method using silica sol as the binder.The morphology and structure of the acidic montmorillonite/cordierite sa...In this work,a series of acidic montmorillonite/cordierite monolithic catalysts were prepared by a coating method using silica sol as the binder.The morphology and structure of the acidic montmorillonite/cordierite samples were characterized by means of X-ray diffraction(XRD),N_2 adsorption/desorption isotherms,and scanning electron microscope(SEM).The cleavage of cumene hydroperoxide(CHP) in a conventional fixed-bed reactor was chosen as a model reaction to evaluate the catalytic activity of the monolithic catalysts.The influences of acidic montmorillonite loading,reaction temperature.CHP concentration,and weight hourly space velocity(WHSV) on the catalytic activity and selectivity of phenol were studied.The results indicated that the obtained acidic montmorillonite/cordierite monolithic catalysts were firm and compact,and the loading of acidic montmorillonite was found to reach 40%(by mass) after three coating operations.The surface area of acidic montmorillonite/cordierite catalysts increases greatly as acidic montmorillonite loading increases due to higher surface area of acidic montmorillonite.Under the optimal reaction conditions(acidic montmorillonite loading of 32.5%(by mass),temperature of 80 ℃,a mass ratio of CHP to acetone of 1:3,and WHSV of CHP of 90 h^(-1)),the conversion of CHP can reach 100%,and the selectivity of phenol is up to 99.8%.展开更多
Homogeneous oxidation using an oil-soluble oxidant, tert-amyl hydroperoxide (TAHP), for ultra-deep desulfurization was performed under mild conditions in the presence of molybdenum oxide catalysts. Dibenzothio- phe...Homogeneous oxidation using an oil-soluble oxidant, tert-amyl hydroperoxide (TAHP), for ultra-deep desulfurization was performed under mild conditions in the presence of molybdenum oxide catalysts. Dibenzothio- phene (DBT), benzothiophene (BT) and 4, 6-dimethyl-dibenzothiophene (DMDBT), which are the refractory sulfur compounds for hydrodesulfurization (HDS), were employed as model substrates for a simulated diesel fuel. Activity of molybdenum oxide supported on a macroporous weak acidic resin was investigated. The mass conversion of DBT reached near 100% at 90℃ and a TAHP/DBT molar ratio of 3 with 1% of molybdenum oxide supported on Amberlite IRC-748 resin for 1 h. It was further found that the activities of the model substrates decreased in the or- der of DMDBT 〉DBT 〉BT. In the flow oxidation using TAHP as the oxidant, mass conversion of DBT increased remarkably from 61.3% to 98.5% when dropping the weight hourly space velocity (WHSV) from 40 h^-1 to 10 h^-1. A series of experiments dealt with selectivity of this oxidation using TAHP revealed that the model unsaturated compounds, i.e. 4, 6, 8-trimethyl-2-nonylene, and 2-methylnaphthalene did not affect the oxidation of DBT. Carbazole had nearly no effect on the conversion of DBT using TAHP, but had some influence on the one using tert-butyl hydroperoxide (TBHP). The mass conversion of DBT decreased remarkably from 75.2% to 3.6% when the content of carbazole increased from 0 to 500μg·g^-1. In the flow oxidation using TAHP as the oxidant, the concentration of DBT in model fuels was reduced from 500 μg·g^-1 to 7.2 μg·g^-1 at WHSV of 10 h^-1, and then reduced to 3.8 μg·g^-1 by adsorntion of Al2O3.展开更多
The potential of carrying out oxidative desulfurization(ODS) using oxygen as an oxidant was explored in this work. n-Octane firstly reacted with oxygen to produce hydroperoxides in-situ, which were then used as oxidan...The potential of carrying out oxidative desulfurization(ODS) using oxygen as an oxidant was explored in this work. n-Octane firstly reacted with oxygen to produce hydroperoxides in-situ, which were then used as oxidants to oxidize the dibenzothiophene(DBT) in the absence of catalysts. The hydroperoxides generated in-situ were effective in oxidizing DBT to its corresponding dibenzothiophene sulfone(DBTO_2) which was characterized by FT-IR and ~1H-NMR. The removal rate of DBT could reached 98.4% under conditions covering a temperaure of 140℃, a rection duration of 4 h, and an oxygen partial pressure of 0.4 MPa. The influences of different hydrocarbon components in diesel on DBT removal were investigated. The results showed that cyclohexane and n-dodecane had no effect on the removal of DBT, but xylene had a slight negative effect on DBT removal. A possible oxidation mechanism was proposed and the concentration of hydroperoxides in both O_2-oxidized octane and model diesel were detected.展开更多
AIM: To identify alkyl hydroperoxide reductase subunit C(AhpC) homologs in Bacillus subtilis(B. subtilis) and to characterize their structural and biochemical properties. AhpC is responsible for the detoxification of ...AIM: To identify alkyl hydroperoxide reductase subunit C(AhpC) homologs in Bacillus subtilis(B. subtilis) and to characterize their structural and biochemical properties. AhpC is responsible for the detoxification of reactive oxygen species in bacteria.METHODS: Two AhpC homologs(AhpC_H1 and AhpC_H2) were identified by searching the B. subtilis database; these were then cloned and expressed in Escherichia coli. AhpC mutants carrying substitutions of catalytically important Cys residues(C37S, C47 S, C166 S, C37/47 S, C37/166 S, C47/166 S, and C37/47/166 S for AhpC_H1; C52 S, C169 S, and C52/169 S for AhpC_H2) were obtained by site-directed mutagenesis and purified, and their structure-function relationship was analyzed. The B. subtilis ahp C genes were disrupted by the short flanking homology method, and the phenotypes of the resulting AhpC-deficient bacteria were examined.RESULTS: Comparative characterization of AhpC homologs indicates that AhpC_H1 contains an extra C37, which forms a disulfide bond with the peroxidatic C47, and behaves like an atypical 2-Cys AhpC, while AhpC_H2 functions like a typical 2-Cys AhpC. Tryptic digestion analysis demonstrated the presence of intramolecular Cys37-Cys47 linkage, which could be reduced by thioredoxin, resulting in the association of the dimer into higher-molecular-mass complexes. Peroxidase activity analysis of Cys→Ser mutants indicated that three Cys residues were involved in the catalysis. AhpC_H1 was resistant to inactivation by peroxide substrates, but had lower activity at physiological H2O2 concentrations compared to AhpC_H2, suggesting that in B. subtilis, the enzymes may be physiologically functional at different substrate concentrations. The exposure to organic peroxides induced AhpC_H1 expression, while AhpC_H1-deficient mutants exhibited growth retardation in the stationary phase, suggesting the role of AhpC_H1 as an antioxidant scavenger of lipid hydroperoxides and a stress-response factor in B. subtilis. CONCLUSION: AhpC_H1, a novel atypical 2-Cys AhpC, is functionally distinct from AhpC_H2, a typical 2-Cys AhpC.展开更多
Some 1-imino-3,3-disubstituted-1,3-dihydro isobenzofuran and 2-(1,1-disubstituted hydroxymethyl) benzamide derivatives have been obtained by the aminolysis of phthalide in the presence of triethylamine/aluminum chlori...Some 1-imino-3,3-disubstituted-1,3-dihydro isobenzofuran and 2-(1,1-disubstituted hydroxymethyl) benzamide derivatives have been obtained by the aminolysis of phthalide in the presence of triethylamine/aluminum chloride. 1-Benzylimino-3,3-disubstituted-1,3-dihydro isobenzofuran can be peroxidized to the corresponding hydroperoxides on exposure to the air for a long period. The structure was characterized by single crystal X-ray diffraction and the possible mechanism was suggested.展开更多
Phospholipid hydroperoxide glutathione peroxidase is an antioxidant enzyme that has the highest capability of reducing membrane-bound hydroperoxy lipids as compared to free organic and inorganic hydroperoxides amongst...Phospholipid hydroperoxide glutathione peroxidase is an antioxidant enzyme that has the highest capability of reducing membrane-bound hydroperoxy lipids as compared to free organic and inorganic hydroperoxides amongst the glutathione peroxidases.In this study,urea-induced effects on the inactivation and unfolding of a recombinant phospholipid hydroperoxide glutathione peroxidase(PHGPx)from Oryza sativa were investigated by means of circular dichroism and fluorescence spectroscopy.With the increase of urea concentration,the residual activity of OsPHGPx decreases correspondingly.When the urea concentration is above 5.0 mol/L,there was no residual activity.In addition,the observed changes in intrinsic tryptophan fluorescence,the binding of the hydrophobic fluorescence probe ANS,and the far UV CD describe a common dependence on the concentration of urea suggesting that the conformational features of the native OsPHGPx are lost in a highly cooperative single transition.The unfolding process comprises of three zones:the native base-line zone between 0 and 2.5 mol/L urea,the transition zone between 2.5 and 5.5 mol/L urea,and the denatured base-line zone above 5.5 mol/L urea.The transition zone has a midpoint at about 4.0 mol/L urea.展开更多
Objectives: Smoking increases oxidative modification of LDL, associated with lower HDL plasma levels, systemic inflammatory response and endothelial dysfunction. We tested the hypothesis that the risk status for coron...Objectives: Smoking increases oxidative modification of LDL, associated with lower HDL plasma levels, systemic inflammatory response and endothelial dysfunction. We tested the hypothesis that the risk status for coronary atherosclerosis disease (CAD) of cigarettes smokers might be identified by means of serum oxidative levels and vascular inflammation determination. Design and Methods: Oxidative stress levels, cytokines, and the metabolic status were investigated on 499 subjects admitted to our institute. The association between biomarkers and smoking habits in the presence/absence of disease and with the number of vessel affected, was studied. Results: Oxidative stress and inflammatory levels (p < 0.001) were strongly induced by smoking habits. Serum values of the subjects categorised as CAD, non CAD and healthy subjects differed significantly (p < 0.001) only for the degree of oxidative stress. Glycaemia was able to affect C-reactive protein serum levels with a positive association (p < 0.05). The analysis of the study population indicated that serum oxidative stress levels significantly increased with increasing number of vessels affected (p < 0.01). When statistical analysis was performed separately in both smoking groups, smokers did not show any particular difference for both oxidative stress and inflammation markers between the two groups of cardiovascular patients (CAD and non CAD) and the control group, while for non smokers, the differences were evident. Conclusion: These findings indicate that the considered biomarkers, especially oxidative stress, can be useful to predict the biological damage caused by cigarette smoking, as well as to identify subjects characterised by a higher risk of cardiovascular event, but cannot evaluate the presence of disease in subjects with smoking habit.展开更多
The family of glutathione peroxidases encompasses, as far, three tetrameric glutathione'peroxidases (GPx) and the monomeric PHGPx. Although the overall homology between tetrameric enzymes and PHGPx is less than 30...The family of glutathione peroxidases encompasses, as far, three tetrameric glutathione'peroxidases (GPx) and the monomeric PHGPx. Although the overall homology between tetrameric enzymes and PHGPx is less than 30%, a pronounced similarity has been detected on clusters involved in the active site and a common catalytic triad (selenocysteine glutamine and tryptophan) has been defined by structural and kinetic data.A major peculiar feature of the reaction catalyzed by PHGPx is the possibility to accommodate large lipophilic substrates. This accounts for the observed dramatic antiperoxidant effect and the synergism with vitamin E.Moreover, the reduction of lipid hydroperoxides accounts also for the observed modulation of cycloxygenase and inhibition of 15-lipoxygenase.On the other hand, structural and kinetic data indicate that also the specificity of PHGPx for the donor substrate is not restricted to GSH and the recent observation the PHGPx binds to specific mitochondrial proteins, from which it is released by ionic strength and thiols, suggests a possible fole of this seleooenzyme'in catalyzing the specific oxidation of protein thiols,thus modulating the activity of cellular regulatory elements. on this light, the selenium mojety of PHGPx, reacting much faster that thiols with a peroxide, and then oxidizing specific protein thiols, would channel the oxidation toward protein targets, thus providing, by protein-protein interaction, the specificity of the redox transition展开更多
The kinetics of epoxidation of methylbutene with structurally identical methylbutane hydroperoxide was studied in the presence of a molybdenum catalyst. The analysis of the rate curves suggested the most probable sche...The kinetics of epoxidation of methylbutene with structurally identical methylbutane hydroperoxide was studied in the presence of a molybdenum catalyst. The analysis of the rate curves suggested the most probable scheme of the process. The revealed features of the process and its mathematical description make it possible to more competently design a reactor unit for the commercial production of isoprene according to the developed scheme. The main kinetic constants were calculated.展开更多
An unexpected compound, hydroperoxide (4) formed from (3), the exo-cycloaddition product, which was synthesized through the Lewis acid catlyzed intramolecular Diels-Alder (IMDA) reaction. Its structure was confirmed b...An unexpected compound, hydroperoxide (4) formed from (3), the exo-cycloaddition product, which was synthesized through the Lewis acid catlyzed intramolecular Diels-Alder (IMDA) reaction. Its structure was confirmed by spectra and X-Ray diffraction analysis, An 1O2oxidation mechanism was proposed.展开更多
The desulphurization experiment of oil-soluble oxidant tert-amyl hydroperoxide with dibenzothiophene dissolved in decalin as model-oil was researched. Characterisation on oxidation product was made, and dibenzothiophe...The desulphurization experiment of oil-soluble oxidant tert-amyl hydroperoxide with dibenzothiophene dissolved in decalin as model-oil was researched. Characterisation on oxidation product was made, and dibenzothiophene removal rate was computed. The influence factors of the oxidative reaction regent amount and the condtions of reaction temperature and reaction time were optimized and compared. The best reaction condition was reaction temperature 90℃, reaction time 3 h, ratio of oxygen to sulfur 4:1, catalyst amount 0.12 g. Dibenzothiophene removal rate reached 97% in this reaction condition.展开更多
In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selen...In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selenocysteine. The protein has been shown to be the product of a cloned gene, previously referred to as a glutathione peroxidase gene. S. mansoni PHGPx has been found 5 times more abundant in female than in male worm extract. As in vertebrate PHGPx, homology alignment indicates that the residues involved in the glutathione binding by the tetrameric cellular glutathione peroxidase are mutated in the S. mansoni enzyme. Thus, this aspect appears a landmark of the PHGPx-type of glutathione peroxidases,which might be of functional relevance展开更多
Partial oxidation of methane into primary oxidation products with high value remains a challenge.In this work,photocatalytic oxidation of methane(CH_(4))with high methyl hydroperoxide(CH_(3)OOH)selectivity is achieved...Partial oxidation of methane into primary oxidation products with high value remains a challenge.In this work,photocatalytic oxidation of methane(CH_(4))with high methyl hydroperoxide(CH_(3)OOH)selectivity is achieved using pure titanium oxide(TiO_(2))without any cocatalyst at room temperature and atmospheric pressure.The CH_(3)OOH production rate can reach up to 2050±88μmol·g^(-1)·h^(-1) at pH≈7.0 with 100%selectivity in the liquid product.The stable reaction cycle can reach more than 30 times.This low-cost system achieves superior CH_(4) conversion activity and selectivity compared with similar work.The energy of hydrogen peroxide(H_(2)O_(2))to adsorbed hydroperoxyl radical(^(*)OOH)has a significantly lower reaction energy than conversion to adsorbed hydroxyl radical(*OH)on the(210)surface of the TiO_(2).The^(*)OOH preferentially combines with methyl radical(·CH_(3))to form the most energetically favorable CH_(3)OOH.The mild oxidative environment of this system prevents the reduction of CH_(3)OOH to CH_(3)OH or over-oxidation of CH_(4),which ensures the final CH_(3)OOH with high selectivity and stability.This work provided a low-cost but highly efficient method to achieve partial oxidation with superior selectivity,i.e.,to convert CH_(4) into high-value chemicals.展开更多
基金Supported by the National Natural Science Foundation of China(No.20572058)
文摘CuCl-catalyzed oxidative N-demethylation of arylamines proceeded in the presence of tert-butyl hydroperoxide. The one-electron transfer route of oxidative N-demethylation competed favorably with the H-atom abstraction route.
基金Supported by the National Natural Science Foundation of China(21121064,21076008,21206008)the Projects in the National Science&Technology Pillar Program during the 12th Five-Year Plan Period(2011BAC06B04)the Research Fund for the Doctoral Program of Higher Education of China(20120010110002)
文摘In this work,a series of acidic montmorillonite/cordierite monolithic catalysts were prepared by a coating method using silica sol as the binder.The morphology and structure of the acidic montmorillonite/cordierite samples were characterized by means of X-ray diffraction(XRD),N_2 adsorption/desorption isotherms,and scanning electron microscope(SEM).The cleavage of cumene hydroperoxide(CHP) in a conventional fixed-bed reactor was chosen as a model reaction to evaluate the catalytic activity of the monolithic catalysts.The influences of acidic montmorillonite loading,reaction temperature.CHP concentration,and weight hourly space velocity(WHSV) on the catalytic activity and selectivity of phenol were studied.The results indicated that the obtained acidic montmorillonite/cordierite monolithic catalysts were firm and compact,and the loading of acidic montmorillonite was found to reach 40%(by mass) after three coating operations.The surface area of acidic montmorillonite/cordierite catalysts increases greatly as acidic montmorillonite loading increases due to higher surface area of acidic montmorillonite.Under the optimal reaction conditions(acidic montmorillonite loading of 32.5%(by mass),temperature of 80 ℃,a mass ratio of CHP to acetone of 1:3,and WHSV of CHP of 90 h^(-1)),the conversion of CHP can reach 100%,and the selectivity of phenol is up to 99.8%.
基金Supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘Homogeneous oxidation using an oil-soluble oxidant, tert-amyl hydroperoxide (TAHP), for ultra-deep desulfurization was performed under mild conditions in the presence of molybdenum oxide catalysts. Dibenzothio- phene (DBT), benzothiophene (BT) and 4, 6-dimethyl-dibenzothiophene (DMDBT), which are the refractory sulfur compounds for hydrodesulfurization (HDS), were employed as model substrates for a simulated diesel fuel. Activity of molybdenum oxide supported on a macroporous weak acidic resin was investigated. The mass conversion of DBT reached near 100% at 90℃ and a TAHP/DBT molar ratio of 3 with 1% of molybdenum oxide supported on Amberlite IRC-748 resin for 1 h. It was further found that the activities of the model substrates decreased in the or- der of DMDBT 〉DBT 〉BT. In the flow oxidation using TAHP as the oxidant, mass conversion of DBT increased remarkably from 61.3% to 98.5% when dropping the weight hourly space velocity (WHSV) from 40 h^-1 to 10 h^-1. A series of experiments dealt with selectivity of this oxidation using TAHP revealed that the model unsaturated compounds, i.e. 4, 6, 8-trimethyl-2-nonylene, and 2-methylnaphthalene did not affect the oxidation of DBT. Carbazole had nearly no effect on the conversion of DBT using TAHP, but had some influence on the one using tert-butyl hydroperoxide (TBHP). The mass conversion of DBT decreased remarkably from 75.2% to 3.6% when the content of carbazole increased from 0 to 500μg·g^-1. In the flow oxidation using TAHP as the oxidant, the concentration of DBT in model fuels was reduced from 500 μg·g^-1 to 7.2 μg·g^-1 at WHSV of 10 h^-1, and then reduced to 3.8 μg·g^-1 by adsorntion of Al2O3.
基金the Undergraduate Innovation and Entrepreneurship Training Project (201710057009) for providing funding and support for this research
文摘The potential of carrying out oxidative desulfurization(ODS) using oxygen as an oxidant was explored in this work. n-Octane firstly reacted with oxygen to produce hydroperoxides in-situ, which were then used as oxidants to oxidize the dibenzothiophene(DBT) in the absence of catalysts. The hydroperoxides generated in-situ were effective in oxidizing DBT to its corresponding dibenzothiophene sulfone(DBTO_2) which was characterized by FT-IR and ~1H-NMR. The removal rate of DBT could reached 98.4% under conditions covering a temperaure of 140℃, a rection duration of 4 h, and an oxygen partial pressure of 0.4 MPa. The influences of different hydrocarbon components in diesel on DBT removal were investigated. The results showed that cyclohexane and n-dodecane had no effect on the removal of DBT, but xylene had a slight negative effect on DBT removal. A possible oxidation mechanism was proposed and the concentration of hydroperoxides in both O_2-oxidized octane and model diesel were detected.
基金Supported by The Basic Science Research Program through the Korea Research Foundation Grant funded by the Ministry of Education,Science,and Technology(NRF-2011-0008913)Kim IH and Cha MK performed this work during their research sabbatical supported by Paichai University(2014-2015)
文摘AIM: To identify alkyl hydroperoxide reductase subunit C(AhpC) homologs in Bacillus subtilis(B. subtilis) and to characterize their structural and biochemical properties. AhpC is responsible for the detoxification of reactive oxygen species in bacteria.METHODS: Two AhpC homologs(AhpC_H1 and AhpC_H2) were identified by searching the B. subtilis database; these were then cloned and expressed in Escherichia coli. AhpC mutants carrying substitutions of catalytically important Cys residues(C37S, C47 S, C166 S, C37/47 S, C37/166 S, C47/166 S, and C37/47/166 S for AhpC_H1; C52 S, C169 S, and C52/169 S for AhpC_H2) were obtained by site-directed mutagenesis and purified, and their structure-function relationship was analyzed. The B. subtilis ahp C genes were disrupted by the short flanking homology method, and the phenotypes of the resulting AhpC-deficient bacteria were examined.RESULTS: Comparative characterization of AhpC homologs indicates that AhpC_H1 contains an extra C37, which forms a disulfide bond with the peroxidatic C47, and behaves like an atypical 2-Cys AhpC, while AhpC_H2 functions like a typical 2-Cys AhpC. Tryptic digestion analysis demonstrated the presence of intramolecular Cys37-Cys47 linkage, which could be reduced by thioredoxin, resulting in the association of the dimer into higher-molecular-mass complexes. Peroxidase activity analysis of Cys→Ser mutants indicated that three Cys residues were involved in the catalysis. AhpC_H1 was resistant to inactivation by peroxide substrates, but had lower activity at physiological H2O2 concentrations compared to AhpC_H2, suggesting that in B. subtilis, the enzymes may be physiologically functional at different substrate concentrations. The exposure to organic peroxides induced AhpC_H1 expression, while AhpC_H1-deficient mutants exhibited growth retardation in the stationary phase, suggesting the role of AhpC_H1 as an antioxidant scavenger of lipid hydroperoxides and a stress-response factor in B. subtilis. CONCLUSION: AhpC_H1, a novel atypical 2-Cys AhpC, is functionally distinct from AhpC_H2, a typical 2-Cys AhpC.
基金the Postdoctoral Foundation of China for the tlnancial support.
文摘Some 1-imino-3,3-disubstituted-1,3-dihydro isobenzofuran and 2-(1,1-disubstituted hydroxymethyl) benzamide derivatives have been obtained by the aminolysis of phthalide in the presence of triethylamine/aluminum chloride. 1-Benzylimino-3,3-disubstituted-1,3-dihydro isobenzofuran can be peroxidized to the corresponding hydroperoxides on exposure to the air for a long period. The structure was characterized by single crystal X-ray diffraction and the possible mechanism was suggested.
基金Supported by the National Basic Research Program of China(No.2006CB101706)the Hi-tech Research and DevelopmentProgram of China(No.2007AA100604)the National Natural Science Foundation of China(Nos.30170080and39770078).
文摘Phospholipid hydroperoxide glutathione peroxidase is an antioxidant enzyme that has the highest capability of reducing membrane-bound hydroperoxy lipids as compared to free organic and inorganic hydroperoxides amongst the glutathione peroxidases.In this study,urea-induced effects on the inactivation and unfolding of a recombinant phospholipid hydroperoxide glutathione peroxidase(PHGPx)from Oryza sativa were investigated by means of circular dichroism and fluorescence spectroscopy.With the increase of urea concentration,the residual activity of OsPHGPx decreases correspondingly.When the urea concentration is above 5.0 mol/L,there was no residual activity.In addition,the observed changes in intrinsic tryptophan fluorescence,the binding of the hydrophobic fluorescence probe ANS,and the far UV CD describe a common dependence on the concentration of urea suggesting that the conformational features of the native OsPHGPx are lost in a highly cooperative single transition.The unfolding process comprises of three zones:the native base-line zone between 0 and 2.5 mol/L urea,the transition zone between 2.5 and 5.5 mol/L urea,and the denatured base-line zone above 5.5 mol/L urea.The transition zone has a midpoint at about 4.0 mol/L urea.
文摘Objectives: Smoking increases oxidative modification of LDL, associated with lower HDL plasma levels, systemic inflammatory response and endothelial dysfunction. We tested the hypothesis that the risk status for coronary atherosclerosis disease (CAD) of cigarettes smokers might be identified by means of serum oxidative levels and vascular inflammation determination. Design and Methods: Oxidative stress levels, cytokines, and the metabolic status were investigated on 499 subjects admitted to our institute. The association between biomarkers and smoking habits in the presence/absence of disease and with the number of vessel affected, was studied. Results: Oxidative stress and inflammatory levels (p < 0.001) were strongly induced by smoking habits. Serum values of the subjects categorised as CAD, non CAD and healthy subjects differed significantly (p < 0.001) only for the degree of oxidative stress. Glycaemia was able to affect C-reactive protein serum levels with a positive association (p < 0.05). The analysis of the study population indicated that serum oxidative stress levels significantly increased with increasing number of vessels affected (p < 0.01). When statistical analysis was performed separately in both smoking groups, smokers did not show any particular difference for both oxidative stress and inflammation markers between the two groups of cardiovascular patients (CAD and non CAD) and the control group, while for non smokers, the differences were evident. Conclusion: These findings indicate that the considered biomarkers, especially oxidative stress, can be useful to predict the biological damage caused by cigarette smoking, as well as to identify subjects characterised by a higher risk of cardiovascular event, but cannot evaluate the presence of disease in subjects with smoking habit.
文摘The family of glutathione peroxidases encompasses, as far, three tetrameric glutathione'peroxidases (GPx) and the monomeric PHGPx. Although the overall homology between tetrameric enzymes and PHGPx is less than 30%, a pronounced similarity has been detected on clusters involved in the active site and a common catalytic triad (selenocysteine glutamine and tryptophan) has been defined by structural and kinetic data.A major peculiar feature of the reaction catalyzed by PHGPx is the possibility to accommodate large lipophilic substrates. This accounts for the observed dramatic antiperoxidant effect and the synergism with vitamin E.Moreover, the reduction of lipid hydroperoxides accounts also for the observed modulation of cycloxygenase and inhibition of 15-lipoxygenase.On the other hand, structural and kinetic data indicate that also the specificity of PHGPx for the donor substrate is not restricted to GSH and the recent observation the PHGPx binds to specific mitochondrial proteins, from which it is released by ionic strength and thiols, suggests a possible fole of this seleooenzyme'in catalyzing the specific oxidation of protein thiols,thus modulating the activity of cellular regulatory elements. on this light, the selenium mojety of PHGPx, reacting much faster that thiols with a peroxide, and then oxidizing specific protein thiols, would channel the oxidation toward protein targets, thus providing, by protein-protein interaction, the specificity of the redox transition
文摘The kinetics of epoxidation of methylbutene with structurally identical methylbutane hydroperoxide was studied in the presence of a molybdenum catalyst. The analysis of the rate curves suggested the most probable scheme of the process. The revealed features of the process and its mathematical description make it possible to more competently design a reactor unit for the commercial production of isoprene according to the developed scheme. The main kinetic constants were calculated.
文摘An unexpected compound, hydroperoxide (4) formed from (3), the exo-cycloaddition product, which was synthesized through the Lewis acid catlyzed intramolecular Diels-Alder (IMDA) reaction. Its structure was confirmed by spectra and X-Ray diffraction analysis, An 1O2oxidation mechanism was proposed.
文摘The desulphurization experiment of oil-soluble oxidant tert-amyl hydroperoxide with dibenzothiophene dissolved in decalin as model-oil was researched. Characterisation on oxidation product was made, and dibenzothiophene removal rate was computed. The influence factors of the oxidative reaction regent amount and the condtions of reaction temperature and reaction time were optimized and compared. The best reaction condition was reaction temperature 90℃, reaction time 3 h, ratio of oxygen to sulfur 4:1, catalyst amount 0.12 g. Dibenzothiophene removal rate reached 97% in this reaction condition.
文摘In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selenocysteine. The protein has been shown to be the product of a cloned gene, previously referred to as a glutathione peroxidase gene. S. mansoni PHGPx has been found 5 times more abundant in female than in male worm extract. As in vertebrate PHGPx, homology alignment indicates that the residues involved in the glutathione binding by the tetrameric cellular glutathione peroxidase are mutated in the S. mansoni enzyme. Thus, this aspect appears a landmark of the PHGPx-type of glutathione peroxidases,which might be of functional relevance
基金support by the National Natural Science Foundation of China(No.21972028)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000).
文摘Partial oxidation of methane into primary oxidation products with high value remains a challenge.In this work,photocatalytic oxidation of methane(CH_(4))with high methyl hydroperoxide(CH_(3)OOH)selectivity is achieved using pure titanium oxide(TiO_(2))without any cocatalyst at room temperature and atmospheric pressure.The CH_(3)OOH production rate can reach up to 2050±88μmol·g^(-1)·h^(-1) at pH≈7.0 with 100%selectivity in the liquid product.The stable reaction cycle can reach more than 30 times.This low-cost system achieves superior CH_(4) conversion activity and selectivity compared with similar work.The energy of hydrogen peroxide(H_(2)O_(2))to adsorbed hydroperoxyl radical(^(*)OOH)has a significantly lower reaction energy than conversion to adsorbed hydroxyl radical(*OH)on the(210)surface of the TiO_(2).The^(*)OOH preferentially combines with methyl radical(·CH_(3))to form the most energetically favorable CH_(3)OOH.The mild oxidative environment of this system prevents the reduction of CH_(3)OOH to CH_(3)OH or over-oxidation of CH_(4),which ensures the final CH_(3)OOH with high selectivity and stability.This work provided a low-cost but highly efficient method to achieve partial oxidation with superior selectivity,i.e.,to convert CH_(4) into high-value chemicals.