The rapid development of digital education provides new opportunities and challenges for teaching model innovation.This study aims to explore the application of the BOPPPS(Bridge-in,Objective,Pre-assessment,Participat...The rapid development of digital education provides new opportunities and challenges for teaching model innovation.This study aims to explore the application of the BOPPPS(Bridge-in,Objective,Pre-assessment,Participatory learning,Post-assessment,Summary)teaching method in the development of a blended teaching model for the Operations Research course under the background of digital education.In response to the characteristics of the course and the needs of the student group,the teaching design is reconstructed with a student-centered approach,increasing practical teaching links,improving the assessment and evaluation system,and effectively implementing it in conjunction with digital educational technology.This teaching model has shown significant effectiveness in the context of digital education,providing valuable experience and insights for the innovation of the Operations Research course.展开更多
The emergence of micro-social platform provides the necessary environment and technical support for individualized mobile learning.Individualized mobile learning based on WeChat improves the efficiency of Business Eng...The emergence of micro-social platform provides the necessary environment and technical support for individualized mobile learning.Individualized mobile learning based on WeChat improves the efficiency of Business English teaching and learning.Formative assessment applies to tracking,monitoring,and assessing students’web-based self-learning process in Business English study in Zhejiang Yuexiu University of Foreign Languages.The assessment results are used to guide students’learning effort,so as to promote their autonomous learning ability,and thus make the assessment process and the teaching process an integrated whole.A formative assessment system for business English study is then established based on the research results.展开更多
To satisfy the requirements of accurate operationalrisk assessment of integrated transmission and distribution networks (I-T&D), an integrated operational risk assessment (IORA) algorithm is proposed. Specific cas...To satisfy the requirements of accurate operationalrisk assessment of integrated transmission and distribution networks (I-T&D), an integrated operational risk assessment (IORA) algorithm is proposed. Specific cases demonstrate thatan I-ORA is necessary because it provides accurate handlingof the coupling between transmission and distribution networks,accurate analysis of power supply mode (PSM) changes ofimportant users and helps to improve security and stability ofpower grid operations. Two key technical requirements in theI-ORA algorithm are realized, i.e., integrated topology analysisand integrated power flow calculation. Under a certain contingency, integrated topology analysis is used to assess the risksof substation power cuts, network split and PSM changes ofimportant users, while the integrated power flow calculation,based on the self-adaptive Levenburg-Marquard method andNewton method, can be implemented to assess risks of heavyload/overload and voltage deviation. In addition, the graphicsprocessing unit is used to parallelly process some computationintensive steps. Numerical experiments show that the proposedI-ORA algorithm can realize accurate assessment for the entireI-T&D. In addition, the efficiency and convergence are satisfying,indicating the proposed I-ORA algorithm can significantly benefitreal practice in the coordination operation of I-T&D in the future.展开更多
文摘The rapid development of digital education provides new opportunities and challenges for teaching model innovation.This study aims to explore the application of the BOPPPS(Bridge-in,Objective,Pre-assessment,Participatory learning,Post-assessment,Summary)teaching method in the development of a blended teaching model for the Operations Research course under the background of digital education.In response to the characteristics of the course and the needs of the student group,the teaching design is reconstructed with a student-centered approach,increasing practical teaching links,improving the assessment and evaluation system,and effectively implementing it in conjunction with digital educational technology.This teaching model has shown significant effectiveness in the context of digital education,providing valuable experience and insights for the innovation of the Operations Research course.
基金This research was supported by 2020 Virtual Simulation Experiment Teaching Project of Zhejiang Province and 2020 Project of Higher Education Reform of China(ZJKY5284).
文摘The emergence of micro-social platform provides the necessary environment and technical support for individualized mobile learning.Individualized mobile learning based on WeChat improves the efficiency of Business English teaching and learning.Formative assessment applies to tracking,monitoring,and assessing students’web-based self-learning process in Business English study in Zhejiang Yuexiu University of Foreign Languages.The assessment results are used to guide students’learning effort,so as to promote their autonomous learning ability,and thus make the assessment process and the teaching process an integrated whole.A formative assessment system for business English study is then established based on the research results.
基金the State Grid Zhejiang Electric Power Co.,Ltd.(Science and Technology Project under Grant 5211JH180081:Research on security evaluation and control technology of smart platform based on dispatch cloud.)。
文摘To satisfy the requirements of accurate operationalrisk assessment of integrated transmission and distribution networks (I-T&D), an integrated operational risk assessment (IORA) algorithm is proposed. Specific cases demonstrate thatan I-ORA is necessary because it provides accurate handlingof the coupling between transmission and distribution networks,accurate analysis of power supply mode (PSM) changes ofimportant users and helps to improve security and stability ofpower grid operations. Two key technical requirements in theI-ORA algorithm are realized, i.e., integrated topology analysisand integrated power flow calculation. Under a certain contingency, integrated topology analysis is used to assess the risksof substation power cuts, network split and PSM changes ofimportant users, while the integrated power flow calculation,based on the self-adaptive Levenburg-Marquard method andNewton method, can be implemented to assess risks of heavyload/overload and voltage deviation. In addition, the graphicsprocessing unit is used to parallelly process some computationintensive steps. Numerical experiments show that the proposedI-ORA algorithm can realize accurate assessment for the entireI-T&D. In addition, the efficiency and convergence are satisfying,indicating the proposed I-ORA algorithm can significantly benefitreal practice in the coordination operation of I-T&D in the future.