The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an ef...The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an effective backup way to achieve carbon neutrality.In this case,the potential of saline aquifers for CO_(2) storage serves as a critical basis for subsequent geological storage project.This study calculated the technical control capacities of CO_(2) of the saline aquifers in the fifth member of the Shiqianfeng Formation(the Qian-5 member)based on the statistical analysis of the logging and the drilling and core data from more than 200 wells in the northeastern Ordos Basin,as well as the sedimentary facies,formation lithology,and saline aquifer development patterns of the Qian-5 member.The results show that(1)the reservoirs of saline aquifers in the Qian-5 member,which comprise distributary channel sand bodies of deltaic plains,feature low porosities and permeabilities;(2)The study area hosts three NNE-directed saline aquifer zones,where saline aquifers generally have a single-layer thickness of 3‒8 m and a cumulative thickness of 8‒24 m;(3)The saline aquifers of the Qian-5 member have a total technical control capacity of CO_(2) of 119.25×10^(6) t.With the largest scale and the highest technical control capacity(accounting for 61%of the total technical control capacity),the Jinjie-Yulin saline aquifer zone is an important prospect area for the geological storage of CO_(2) in the saline aquifers of the Qian-5 member in the study area.展开更多
With the increasing severity of environmental problems,many countries have set energy transition targets to promote the realization of the Paris Agreement.There has been a global consensus on utilizing solar energy re...With the increasing severity of environmental problems,many countries have set energy transition targets to promote the realization of the Paris Agreement.There has been a global consensus on utilizing solar energy resources as alternatives to conventional sources to support this energy transition.In this regard,analyzing the“location,”“quantity,”and“quality”of global solar energy resources will not only assist an individual country to efficiently utilize these resources but also promote the realization of large-scale intercontinental resource utilization and complementation.This study established the basic database,model methods,and platform tools for global solar energy assessment,Then,a global solar energy resource assessment was conducted,which included the theoretical reserves(TRs),technical installed potential capacity(TPIC),and average development cost(ADC).A comparative analysis of the assessment results for all continents was also performed.After that,based on big data analysis and geographic information system(GIS)calculations,the distribution characteristics of the global solar power TPIC were calculated with the two core indicators,namely the capacity factor and ADC.Furthermore,a data-driven quantitative evaluation of the refined development potential of solar energy resources was performed.Finally,the reasonableness and coincidence analysis of the resource assessment results were verified using data from global and specifically Chinese photovoltaic(PV)bases.展开更多
基金funded by the Top 10 key scientific and technological projects of CHN Energy in 2021 entitled Research and Demonstration of Technology for Carbon Dioxide Capture and Energy Recycling Utilization(GJNYKJ[2021]No.128,No.:GJNY-21-51)the Carbon Neutrality College(Yulin)Northwest University project entitled Design and research of large-scale CCUS cluster construction in Yulin area,Shaanxi Province(YL2022-38-01).
文摘The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an effective backup way to achieve carbon neutrality.In this case,the potential of saline aquifers for CO_(2) storage serves as a critical basis for subsequent geological storage project.This study calculated the technical control capacities of CO_(2) of the saline aquifers in the fifth member of the Shiqianfeng Formation(the Qian-5 member)based on the statistical analysis of the logging and the drilling and core data from more than 200 wells in the northeastern Ordos Basin,as well as the sedimentary facies,formation lithology,and saline aquifer development patterns of the Qian-5 member.The results show that(1)the reservoirs of saline aquifers in the Qian-5 member,which comprise distributary channel sand bodies of deltaic plains,feature low porosities and permeabilities;(2)The study area hosts three NNE-directed saline aquifer zones,where saline aquifers generally have a single-layer thickness of 3‒8 m and a cumulative thickness of 8‒24 m;(3)The saline aquifers of the Qian-5 member have a total technical control capacity of CO_(2) of 119.25×10^(6) t.With the largest scale and the highest technical control capacity(accounting for 61%of the total technical control capacity),the Jinjie-Yulin saline aquifer zone is an important prospect area for the geological storage of CO_(2) in the saline aquifers of the Qian-5 member in the study area.
基金supported by National Science and Technology Major Project(2018YFB0904000).
文摘With the increasing severity of environmental problems,many countries have set energy transition targets to promote the realization of the Paris Agreement.There has been a global consensus on utilizing solar energy resources as alternatives to conventional sources to support this energy transition.In this regard,analyzing the“location,”“quantity,”and“quality”of global solar energy resources will not only assist an individual country to efficiently utilize these resources but also promote the realization of large-scale intercontinental resource utilization and complementation.This study established the basic database,model methods,and platform tools for global solar energy assessment,Then,a global solar energy resource assessment was conducted,which included the theoretical reserves(TRs),technical installed potential capacity(TPIC),and average development cost(ADC).A comparative analysis of the assessment results for all continents was also performed.After that,based on big data analysis and geographic information system(GIS)calculations,the distribution characteristics of the global solar power TPIC were calculated with the two core indicators,namely the capacity factor and ADC.Furthermore,a data-driven quantitative evaluation of the refined development potential of solar energy resources was performed.Finally,the reasonableness and coincidence analysis of the resource assessment results were verified using data from global and specifically Chinese photovoltaic(PV)bases.