More accurate forecasting of rock burst might be possible from observations of electromagnetic radiation emitted in the mine.We analyzed experimental observations and field data from the Muchengjian coal mine to study...More accurate forecasting of rock burst might be possible from observations of electromagnetic radiation emitted in the mine.We analyzed experimental observations and field data from the Muchengjian coal mine to study the relationship between electromagnetic radiation signal intensity and stress during the fracturing of coal, or rock, and samples under load.The results show that the signal intensity is positively correlated with stress.In addition, we investigated the change in the electromagnetic radiation intensity, the supporting resistance in a real coal mine environment, and the coal or rock stress in the mining area.The data analysis indicates that:1) electromagnetic radiation intensity can accurately reflect the distribution of stress in the mining area;and, 2) there is a correlation between electromagnetic radiation intensity and supporting resistance.The research has some practical guiding significance for rock burst forecasting and for the prevention of accidents in coal mines.展开更多
The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the ...The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the recognition and analysis of the EMR signal features during the disaster. With the aim of removing these noises, an ensemble empirical mode decomposition (EEMD) adaptive morphological filter was proposed. From the result of the simulation and the experiment, it is shown that the method can restrain the random noise and white Gaussian noise mixed with EMR signal effectively. The filter is highly useful for improving the robustness of the coal or rock dynamic disaster monitoring system.展开更多
The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,t...The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency.展开更多
The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of...The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of stress of a coal body. The higher the stress, the more intense the deformation and fractures of a coal body and the stronger the EMR signals. EMR signals reflect the degrees of concentrated stress of a coal body and danger of a rock burst. We selected EMR intensity as the test index of the No.237 gob-surrounded coal face in the Nanshan coal mine. We tested the EMR characteristics of the stress distribution on the strike, on the incline and in the interior of the coal body. The EMR rule of rock bursts, caused by sudden changes in stress, is analyzed. Our research shows that EMR technology can be not only used to test qualitatively the stress distribution of the surrounding rock, but also to predict a possible occurrence of rock burst. Based on this, effective distress measures are used to eliminate or at least weaken the incidence of rock bursts. We hooe that safetv in coalmines will be enhanced.展开更多
基金Projects 50427401 supported by the National Natural Science Foundation of China2006AA06Z119 by the Hi-tech Research and Development Program of China+2 种基金NCET-06-0477 by the New Century Excellent Talent Plan of Ministry of Education2007A002 by the Science & Research Foundation for Youth of China University of Mining and Technologythe Na-tional Basic Research Program of China (2005cb221505)
文摘More accurate forecasting of rock burst might be possible from observations of electromagnetic radiation emitted in the mine.We analyzed experimental observations and field data from the Muchengjian coal mine to study the relationship between electromagnetic radiation signal intensity and stress during the fracturing of coal, or rock, and samples under load.The results show that the signal intensity is positively correlated with stress.In addition, we investigated the change in the electromagnetic radiation intensity, the supporting resistance in a real coal mine environment, and the coal or rock stress in the mining area.The data analysis indicates that:1) electromagnetic radiation intensity can accurately reflect the distribution of stress in the mining area;and, 2) there is a correlation between electromagnetic radiation intensity and supporting resistance.The research has some practical guiding significance for rock burst forecasting and for the prevention of accidents in coal mines.
文摘The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the recognition and analysis of the EMR signal features during the disaster. With the aim of removing these noises, an ensemble empirical mode decomposition (EEMD) adaptive morphological filter was proposed. From the result of the simulation and the experiment, it is shown that the method can restrain the random noise and white Gaussian noise mixed with EMR signal effectively. The filter is highly useful for improving the robustness of the coal or rock dynamic disaster monitoring system.
基金supported by Youth Science Foundation of the National Natural Science Foundation of China(No.51104156)the Fundamental Research Funds for the Central Universities of China(No.2013QNB02)the 12th Five Year National Science and Technology Support Key Project of China(Nos. 2012BAK04B07-2 and 2012BAK09B01-04)
文摘The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency.
基金Projects 50204010 and 50427401 supported by the National Natural Science Foundation of China2005CB221505 by the National Basic Research Programof China2005BA813B-3-09 by the National "Tenth Five" Scientific and Technology Key Projects of China
文摘The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of stress of a coal body. The higher the stress, the more intense the deformation and fractures of a coal body and the stronger the EMR signals. EMR signals reflect the degrees of concentrated stress of a coal body and danger of a rock burst. We selected EMR intensity as the test index of the No.237 gob-surrounded coal face in the Nanshan coal mine. We tested the EMR characteristics of the stress distribution on the strike, on the incline and in the interior of the coal body. The EMR rule of rock bursts, caused by sudden changes in stress, is analyzed. Our research shows that EMR technology can be not only used to test qualitatively the stress distribution of the surrounding rock, but also to predict a possible occurrence of rock burst. Based on this, effective distress measures are used to eliminate or at least weaken the incidence of rock bursts. We hooe that safetv in coalmines will be enhanced.