This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fa- tigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are ba...This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fa- tigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respec- tively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2010CB631006)the National Natural Science Foundation of China(GrantNos.11072124 and 11272173)
文摘This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fa- tigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respec- tively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.