期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Technology Transfer and Research of RE Application Product Contracts Signed
1
《China Rare Earth Information》 2005年第4期3-4,共2页
关键词 RE Technology Transfer and Research of RE Application Product Contracts signed
下载PDF
Analysis of the interdigitated back contact solar cells:The n-type substrate lifetime and wafer thickness
2
作者 张巍 陈晨 +5 位作者 贾锐 孙昀 邢钊 金智 刘新宇 刘晓文 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期638-643,共6页
The n-type silicon integrated-back contact(IBC) solar cell has attracted much attention due to its high efficiency,whereas its performance is very sensitive to the wafer of low quality or the contamination during hi... The n-type silicon integrated-back contact(IBC) solar cell has attracted much attention due to its high efficiency,whereas its performance is very sensitive to the wafer of low quality or the contamination during high temperature fabrication processing, which leads to low bulk lifetime τbulk. In order to clarify the influence of bulk lifetime on cell characteristics, two-dimensional(2D) TCAD simulation, combined with our experimental data, is used to simulate the cell performances, with the wafer thickness scaled down under various τbulk conditions. The modeling results show that for the IBC solar cell with high τbulk,(such as 1 ms-2 ms), its open-circuit voltage V oc almost remains unchanged, and the short-circuit current density J sc monotonically decreases as the wafer thickness scales down. In comparison, for the solar cell with low τbulk(for instance, 〈 500 μs) wafer or the wafer contaminated during device processing, the V oc increases monotonically but the J sc first increases to a maximum value and then drops off as the wafer's thickness decreases. A model combing the light absorption and the minority carrier diffusion is used to explain this phenomenon. The research results show that for the wafer with thinner thickness and high bulk lifetime, the good light trapping technology must be developed to offset the decrease in J sc. 展开更多
关键词 LIFETIME wafer thickness interdigitated back contact solar cells technology computer-aided de- sign
下载PDF
Pengxin Resources Sign a Strategic Cooperation Agreement with Greatpower Technology
3
《China Nonferrous Metals Monthly》 2018年第1期3-4,共2页
On November 16,2017,Pengxin Resources announced that the company recently signed a Strategic Cooperation Framework Agreement with Greatpower Technology Co.,Ltd.,in which both sides intended to establish longterm,compr... On November 16,2017,Pengxin Resources announced that the company recently signed a Strategic Cooperation Framework Agreement with Greatpower Technology Co.,Ltd.,in which both sides intended to establish longterm,comprehensive and stable strategic cooperative relations in the new energy storage sector. 展开更多
关键词 CO Pengxin Resources sign a Strategic Cooperation Agreement with Greatpower Technology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部