Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controlle...Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.展开更多
In order to alleviate the pressure of environmental protection and further strengthen the monitoring and control of NOx emission of thermal power units, combining with the transformation of boiler low-nitrogen burner,...In order to alleviate the pressure of environmental protection and further strengthen the monitoring and control of NOx emission of thermal power units, combining with the transformation of boiler low-nitrogen burner, combustion optimization, static and dynamic ratio of air and coal, and SCR denitration system process, third-order NOx online control technology was designed and applied, which takes the combustion security, boiler efficiency and environmental evaluation into account and provide reference for thermal power units to deepen energy conservation and emission reduction.展开更多
Green sand casting is still a main method in the world at present and it isvery significant to develop the technology of controlling green sand quality. A new concept, fromcontents test to contents control, is advance...Green sand casting is still a main method in the world at present and it isvery significant to develop the technology of controlling green sand quality. A new concept, fromcontents test to contents control, is advanced. In order to realize the new idea, a new method toon-line test active clay and moisture of green sand - double powers energizing alternately (DPEA)method is put forwards. The principle of the new method is to energize standard sand sample with ACand DC powers and to test the electric parameters, and then, to calculate active clay and moistureof green sand by using artificial neural network (ANN). Based on this new method, a directoptimizing system for controlling green sand quality is developed. Techniques about testing andcontrolling methods, hardware and software are discussed.展开更多
Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate...Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate the commutation and enhance the torque production remarkably.Besides,an on line adjusting algorithm based on the Golden Section Method is adopted to search the optimal advanced conduction angle.Simulation and experimental results verify the feasibility and effectivity of the scheme proposed.展开更多
In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for ma...In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for main and booster fans,whilst also fulfilling airflow setpoints without violating constraints such as min/max differential pressure over fans and interaction of air between areas in mines.Using air flow measurements and a dynamical model of the ventilation system,a mine-wide coordination control of fans can be carried out.The numerical model is data driven and derived from historical operational data or step changes experiments.This makes both initial deployment and lifetime model maintenance,as the mine evolves,a comparably easy operation.The control has been proven to operate in a stable manner over long periods without having to re-calibrate the model.Results prove a 40%decrease in energy use for the fans involved and a greater controllability of air flow.Moreover,a 15%decrease of the total air flow into the mine will give additional proportional heating savings during winter periods.All in all,the multivariable controller shows a correlation between production in the mine and the ventilation system performance superior to all of its predecessors.展开更多
The q-profile control problem in the ramp-up phase of plasma discharges is consid- ered in this work. The magnetic diffusion partial differential equation (PDE) models the dynamics of the poloidal magnetic flux prof...The q-profile control problem in the ramp-up phase of plasma discharges is consid- ered in this work. The magnetic diffusion partial differential equation (PDE) models the dynamics of the poloidal magnetic flux profile, which is used in this work to formulate a PDE-constrained op-timization problem under a quasi-static assumption. The minimum surface theory and constrained numeric optimization are then applied to achieve suboptimal solutions. Since the transient dy- namics is pre-given by the minimum surface theory, then this method can dramatically accelerate the solution process. In order to be robust under external uncertainties in real implementations, PID (proportional-integral-derivative) controllers are used to force the actuators to follow the computational input trajectories. It has the potential to implement in real-time for long time discharges by combining this method with the magnetic equilibrium update.展开更多
The emerging novel energy infrastructures,such as energy communities,smart building-based microgrids,electric vehicles enabled mobile energy storage units raise the requirements for a more interconnective and interope...The emerging novel energy infrastructures,such as energy communities,smart building-based microgrids,electric vehicles enabled mobile energy storage units raise the requirements for a more interconnective and interoperable energy system.It leads to a transition from simple and isolated microgrids to relatively large-scale and complex interconnected microgrid systems named multi-microgrid clusters.In order to efficiently,optimally,and flexibly control multi-microgrid clusters,cross-disciplinary technologies such as power electronics,control theory,optimization algorithms,information and communication technologies,cyber-physical,and big-data analysis are needed.This paper introduces an overview of the relevant aspects for multi-microgrids,including the out-standing features,architectures,typical applications,existing control mechanisms,as well as the challenges.展开更多
Optimal gliding guidance for a guided bomb unit in the vertical plane is studied based on nonlinear dynamics and kinematics.The guidance law is designed under minimum energy loss index.To avoid the complexity in solvi...Optimal gliding guidance for a guided bomb unit in the vertical plane is studied based on nonlinear dynamics and kinematics.The guidance law is designed under minimum energy loss index.To avoid the complexity in solving two-point-boundary-value problems,the steady-state solutions of the adjoint states in regular equations are suggested to be used.With these considerations,a quasi-closed,optimal gliding guidance law is obtained.The guidance law is described by the angle of attack in a simple nonlinear equation.An iterative computation method can be easily used to get the optimal angle of attack.The further simplified direct computation algorithm for the optimal angle of attack is also given.The guidance properties are compared with those of maximum lift-to-drag angle of attack control.The simulation results demonstrate that the quasi-closed,optimal gliding guidance law can improve the gliding phase terminal performance with significant increase in the altitude and much little decrease in the speed.展开更多
A spacecraft re-entry attitude control method using sliding mode control (SMC) theory is developed. The controller utilizes double-loop SMC scheme and provides the robust, de-coupled tracking of both the angular veloc...A spacecraft re-entry attitude control method using sliding mode control (SMC) theory is developed. The controller utilizes double-loop SMC scheme and provides the robust, de-coupled tracking of both the angular velocity and the shuttle orientation angles. In accordance with the hybrid-controlling characteristics of the aerodynamic surfaces and reaction control system of the spacecraft, the control torque commands are allocated into the actuators such as the aerodynamic surfaces and reaction control system by using the optimal control selection allocation algorithm. The simulation of the spacecraft re-entry attitude controlling demonstrates the robust, de-coupled tracking performance of the proposed method and its validity.展开更多
As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study ai...As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.展开更多
In recent years with the increasing number of super high-rise buildings and the ever-expanding scale the anti-smoke construction technology has attracted more and more attention.Based on this situation,this paper anal...In recent years with the increasing number of super high-rise buildings and the ever-expanding scale the anti-smoke construction technology has attracted more and more attention.Based on this situation,this paper analyzes the smoke control technology of super high-rise buildings.The paper analyzes the importance of the application of anti-smoke construction technology in super high-rise buildings,analyzes the problems in the construction of smoke control and super high-rise buildings.The anti-smoke construction technology was studied and I hope that it can benefit the application of anti-smoke construction technology in high-rise buildings.展开更多
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金Supported by the National Natural Science Foundation of China (61104084, 61290323)the Guangdong Education University-Industry Cooperation Projects (2010B090400410)
文摘Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.
文摘In order to alleviate the pressure of environmental protection and further strengthen the monitoring and control of NOx emission of thermal power units, combining with the transformation of boiler low-nitrogen burner, combustion optimization, static and dynamic ratio of air and coal, and SCR denitration system process, third-order NOx online control technology was designed and applied, which takes the combustion security, boiler efficiency and environmental evaluation into account and provide reference for thermal power units to deepen energy conservation and emission reduction.
基金Provincial Outstanding Youth Foundation of Heilongjiang, China.
文摘Green sand casting is still a main method in the world at present and it isvery significant to develop the technology of controlling green sand quality. A new concept, fromcontents test to contents control, is advanced. In order to realize the new idea, a new method toon-line test active clay and moisture of green sand - double powers energizing alternately (DPEA)method is put forwards. The principle of the new method is to energize standard sand sample with ACand DC powers and to test the electric parameters, and then, to calculate active clay and moistureof green sand by using artificial neural network (ANN). Based on this new method, a directoptimizing system for controlling green sand quality is developed. Techniques about testing andcontrolling methods, hardware and software are discussed.
基金Supported by College Doctoral- Program Special ResearchFund of the Ministry of Education (No.970 0 562 1 )
文摘Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate the commutation and enhance the torque production remarkably.Besides,an on line adjusting algorithm based on the Golden Section Method is adopted to search the optimal advanced conduction angle.Simulation and experimental results verify the feasibility and effectivity of the scheme proposed.
文摘In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for main and booster fans,whilst also fulfilling airflow setpoints without violating constraints such as min/max differential pressure over fans and interaction of air between areas in mines.Using air flow measurements and a dynamical model of the ventilation system,a mine-wide coordination control of fans can be carried out.The numerical model is data driven and derived from historical operational data or step changes experiments.This makes both initial deployment and lifetime model maintenance,as the mine evolves,a comparably easy operation.The control has been proven to operate in a stable manner over long periods without having to re-calibrate the model.Results prove a 40%decrease in energy use for the fans involved and a greater controllability of air flow.Moreover,a 15%decrease of the total air flow into the mine will give additional proportional heating savings during winter periods.All in all,the multivariable controller shows a correlation between production in the mine and the ventilation system performance superior to all of its predecessors.
基金supported partially by the US NSF CAREER award program (ECCS-0645086)National Natural Science Foundation of China (No.F030119)+2 种基金Zhejiang Provincial Natural Science Foundation of China (Nos.Y1110354, Y6110751)the Fundamental Research Funds for the Central Universities of China (No.1A5000-172210101)the Natural Science Foundation of Ningbo (No.2010A610096)
文摘The q-profile control problem in the ramp-up phase of plasma discharges is consid- ered in this work. The magnetic diffusion partial differential equation (PDE) models the dynamics of the poloidal magnetic flux profile, which is used in this work to formulate a PDE-constrained op-timization problem under a quasi-static assumption. The minimum surface theory and constrained numeric optimization are then applied to achieve suboptimal solutions. Since the transient dy- namics is pre-given by the minimum surface theory, then this method can dramatically accelerate the solution process. In order to be robust under external uncertainties in real implementations, PID (proportional-integral-derivative) controllers are used to force the actuators to follow the computational input trajectories. It has the potential to implement in real-time for long time discharges by combining this method with the magnetic equilibrium update.
基金supported by VILLUM FONDEN under the VILLUM Investigator Grant(No.25920):Center for Research on Microgrids(CROM)www.crom.et.aau.dk。
文摘The emerging novel energy infrastructures,such as energy communities,smart building-based microgrids,electric vehicles enabled mobile energy storage units raise the requirements for a more interconnective and interoperable energy system.It leads to a transition from simple and isolated microgrids to relatively large-scale and complex interconnected microgrid systems named multi-microgrid clusters.In order to efficiently,optimally,and flexibly control multi-microgrid clusters,cross-disciplinary technologies such as power electronics,control theory,optimization algorithms,information and communication technologies,cyber-physical,and big-data analysis are needed.This paper introduces an overview of the relevant aspects for multi-microgrids,including the out-standing features,architectures,typical applications,existing control mechanisms,as well as the challenges.
文摘Optimal gliding guidance for a guided bomb unit in the vertical plane is studied based on nonlinear dynamics and kinematics.The guidance law is designed under minimum energy loss index.To avoid the complexity in solving two-point-boundary-value problems,the steady-state solutions of the adjoint states in regular equations are suggested to be used.With these considerations,a quasi-closed,optimal gliding guidance law is obtained.The guidance law is described by the angle of attack in a simple nonlinear equation.An iterative computation method can be easily used to get the optimal angle of attack.The further simplified direct computation algorithm for the optimal angle of attack is also given.The guidance properties are compared with those of maximum lift-to-drag angle of attack control.The simulation results demonstrate that the quasi-closed,optimal gliding guidance law can improve the gliding phase terminal performance with significant increase in the altitude and much little decrease in the speed.
文摘A spacecraft re-entry attitude control method using sliding mode control (SMC) theory is developed. The controller utilizes double-loop SMC scheme and provides the robust, de-coupled tracking of both the angular velocity and the shuttle orientation angles. In accordance with the hybrid-controlling characteristics of the aerodynamic surfaces and reaction control system of the spacecraft, the control torque commands are allocated into the actuators such as the aerodynamic surfaces and reaction control system by using the optimal control selection allocation algorithm. The simulation of the spacecraft re-entry attitude controlling demonstrates the robust, de-coupled tracking performance of the proposed method and its validity.
文摘As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.
文摘In recent years with the increasing number of super high-rise buildings and the ever-expanding scale the anti-smoke construction technology has attracted more and more attention.Based on this situation,this paper analyzes the smoke control technology of super high-rise buildings.The paper analyzes the importance of the application of anti-smoke construction technology in super high-rise buildings,analyzes the problems in the construction of smoke control and super high-rise buildings.The anti-smoke construction technology was studied and I hope that it can benefit the application of anti-smoke construction technology in high-rise buildings.