Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent...Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research.展开更多
In this paper,the occurrence and development mechanism of strain on the cross-section during the wood drying is explored.Therefore,strain regularity on the cross-section of 50 mm thickness elm(Ulmus rubra)board at the...In this paper,the occurrence and development mechanism of strain on the cross-section during the wood drying is explored.Therefore,strain regularity on the cross-section of 50 mm thickness elm(Ulmus rubra)board at the temperature of 40℃and 80℃is detected via digital image correlation technology.Hence,the difference between tangential and radial strain at surface and core layers was denoted.The results showed that strain distribution in the width direction of the board is uneven.Moreover,a large drying shrinkage strain occurs at the near-core layer,while the maximum strain difference reaches 4.08%.Hence,the surface of the board is cracked along the thickness direction.The radial strain of the board is higher than the tangential strain in the early stage of drying,while these strains are reversed in the later stage of drying.The temperature is related to the difference between the tangential and radial strains of the elm board.These differences at the core layer are larger than those of the surface layer.The conducted research results provide a theoretical basis for process optimization.展开更多
Signals from infrared detector are very weak in SO2 concentration measuring system.In order to improve the sensitivity of detection,combining with filter correlation technology and infrared absorption principle,the we...Signals from infrared detector are very weak in SO2 concentration measuring system.In order to improve the sensitivity of detection,combining with filter correlation technology and infrared absorption principle,the weak signal processing circuit is designed according to correlation detection technology.Under laboratory conditions,system performance of SO2 concentration is tested,and the experimental data are analyzed and processed.Then relationship of SO2 concentration and the measuring voltage is provided to prove that the design improves measuring sensitivity of the system.展开更多
Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress r...Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.展开更多
Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this ...Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this study,a mining technology of continuous driving and gangue backfilling(CDGB)was proposed.The technology,which can not only alleviate ground subsidence and gangue discharge,but also release the above-mentioned coals,contributes to green and efficient sustainable development of mining.The stability of the system of the solidified body-reserved coal pillar combination(S-C combination)is crucial to the CDGB technology.Therefore,it is of great significance to explore the mechanical and damage characteristics of S-C combination in the synergistic bearing process.First,four sets of differentshaped S-C combination specimens were fabricated and a S-C combination bearing structure in CDGB was constructed to explore the differences in mechanical characteristics and damage modes of different-shaped S-C combination specimens during CDGB.Subsequently,their surface strain field evolutions and acoustic emission(AE)response characteristics in the load-bearing process were obtained with the aid of the digital image correlation technique and the AE signal monitoring system.Furthermore,a damage evolution model based on AE parameters and mechanical parameters was established to clarify the damage evolution law.The following results were obtained:(1)The free area of S-C combination can serve as a quantitative index to evaluate the stability of the overburden control system;(2)The concept of critical value k of the free area was first proposed.When the free area exceeds the critical value k(free area ratio greater than 1.13),the deformation resistance and the free area changes becomes negatively correlated;(3)As the free area expands,the failure of the S-C combination specimen evolves from tensile failure to shear failure.The distribution characteristics of the axial strain field also verified such a change in the failure mode;(4)When the free area expands,the peak AE count gradually changes from“double peaks”to“a single peak”.In this process,the expansion of free area shortens the time for accumulating and releasing energy during loading.Micro cracks generated in the specimen change from a phased steep growth to a continuous increase,and the process in which micro cracks develop,converge,intersect and connect to form macro cracks accelerates.The damage evolution law concluded based on AE parameters and mechanical parameters can well characterize the damage evolution process of S-C combination,providing certain reference for the study on the synergistic bearing of S-C combination during CDGB.展开更多
Covariance of clean signal and observed noise is necessary for extracting clean signal from a time series.This is transferred to calculate the covariance of observed noise and clean signal's MA process,when the cl...Covariance of clean signal and observed noise is necessary for extracting clean signal from a time series.This is transferred to calculate the covariance of observed noise and clean signal's MA process,when the clean signal is described by an autoregressive moving average (ARMA) model.Using the correlations of the innovations data from observed time series to form a least-squares problem,a concisely autocovariance least-square (CALS) method has been proposed to estimate the covariance.We also extended our work to the case of unknown MA process coefficients.Comparisons between Odelson's autocovariance least-square (ALS) estimation algorithm and the proposed CALS method show that the CALS method could get a much more exact and compact estimation of the covariance than ALS and its extended form.展开更多
基金the support of the National Natural Science Foundation of China(Grant Nos.42207199,52179113,42272333)Zhejiang Postdoctoral Scientific Research Project(Grant Nos.ZJ2022155,ZJ2022156)。
文摘Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research.
基金supported by the National Natural Science Foundation of China(No.31901242)Heilongjiang Science Foundation Project(No.LH2020C038)National Undergraduate Training Programs for Innovations(No.202110225074)。
文摘In this paper,the occurrence and development mechanism of strain on the cross-section during the wood drying is explored.Therefore,strain regularity on the cross-section of 50 mm thickness elm(Ulmus rubra)board at the temperature of 40℃and 80℃is detected via digital image correlation technology.Hence,the difference between tangential and radial strain at surface and core layers was denoted.The results showed that strain distribution in the width direction of the board is uneven.Moreover,a large drying shrinkage strain occurs at the near-core layer,while the maximum strain difference reaches 4.08%.Hence,the surface of the board is cracked along the thickness direction.The radial strain of the board is higher than the tangential strain in the early stage of drying,while these strains are reversed in the later stage of drying.The temperature is related to the difference between the tangential and radial strains of the elm board.These differences at the core layer are larger than those of the surface layer.The conducted research results provide a theoretical basis for process optimization.
文摘Signals from infrared detector are very weak in SO2 concentration measuring system.In order to improve the sensitivity of detection,combining with filter correlation technology and infrared absorption principle,the weak signal processing circuit is designed according to correlation detection technology.Under laboratory conditions,system performance of SO2 concentration is tested,and the experimental data are analyzed and processed.Then relationship of SO2 concentration and the measuring voltage is provided to prove that the design improves measuring sensitivity of the system.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52125903 and 52209149).
文摘Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.
基金the National Natural Science Foundation of China(Nos.U21A20108,52322403,52174108,and 51974105)the Support Plan for Science&Technology Innovation Talents in Universities of Henan Province(No.21HASTIT024)+1 种基金the Scientific and technological innovation research team of Henan Polytechnic University(No.T2021-5)the Henan Excellent Youth Science Foundation(No.222300420045).
文摘Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this study,a mining technology of continuous driving and gangue backfilling(CDGB)was proposed.The technology,which can not only alleviate ground subsidence and gangue discharge,but also release the above-mentioned coals,contributes to green and efficient sustainable development of mining.The stability of the system of the solidified body-reserved coal pillar combination(S-C combination)is crucial to the CDGB technology.Therefore,it is of great significance to explore the mechanical and damage characteristics of S-C combination in the synergistic bearing process.First,four sets of differentshaped S-C combination specimens were fabricated and a S-C combination bearing structure in CDGB was constructed to explore the differences in mechanical characteristics and damage modes of different-shaped S-C combination specimens during CDGB.Subsequently,their surface strain field evolutions and acoustic emission(AE)response characteristics in the load-bearing process were obtained with the aid of the digital image correlation technique and the AE signal monitoring system.Furthermore,a damage evolution model based on AE parameters and mechanical parameters was established to clarify the damage evolution law.The following results were obtained:(1)The free area of S-C combination can serve as a quantitative index to evaluate the stability of the overburden control system;(2)The concept of critical value k of the free area was first proposed.When the free area exceeds the critical value k(free area ratio greater than 1.13),the deformation resistance and the free area changes becomes negatively correlated;(3)As the free area expands,the failure of the S-C combination specimen evolves from tensile failure to shear failure.The distribution characteristics of the axial strain field also verified such a change in the failure mode;(4)When the free area expands,the peak AE count gradually changes from“double peaks”to“a single peak”.In this process,the expansion of free area shortens the time for accumulating and releasing energy during loading.Micro cracks generated in the specimen change from a phased steep growth to a continuous increase,and the process in which micro cracks develop,converge,intersect and connect to form macro cracks accelerates.The damage evolution law concluded based on AE parameters and mechanical parameters can well characterize the damage evolution process of S-C combination,providing certain reference for the study on the synergistic bearing of S-C combination during CDGB.
基金supported by the National Science Foundation for Distinguished Young Scholars of China (No. 60925011)
文摘Covariance of clean signal and observed noise is necessary for extracting clean signal from a time series.This is transferred to calculate the covariance of observed noise and clean signal's MA process,when the clean signal is described by an autoregressive moving average (ARMA) model.Using the correlations of the innovations data from observed time series to form a least-squares problem,a concisely autocovariance least-square (CALS) method has been proposed to estimate the covariance.We also extended our work to the case of unknown MA process coefficients.Comparisons between Odelson's autocovariance least-square (ALS) estimation algorithm and the proposed CALS method show that the CALS method could get a much more exact and compact estimation of the covariance than ALS and its extended form.