期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Microstructural Evolution of Surface Layer of TWIP Steel Deformed by Mechanical Attrition Treatment 被引量:5
1
作者 LI Da-zhao1,2, WEI Ying-hui1, HOU Li-feng1, LIN Wan-ming1 (1. College of Materials and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China 2. College of Materials and Engineering, North University of China, Taiyuan 030051, Shanxi, China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第3期38-46,共9页
A nanocrystalline layer was synthesized on the surface of TWIP steel samples by surface mechanical attri- tion treatment (SMAT) under varying durations. Microhardness variation was examined along the depth of the de... A nanocrystalline layer was synthesized on the surface of TWIP steel samples by surface mechanical attri- tion treatment (SMAT) under varying durations. Microhardness variation was examined along the depth of the de- formation layer. Microstructural characteristics of the surface at the TWIP steel SMATed for 90 min were observed and analyzed by optical microscope, x-ray diffraction, transmission and high-resolution electron microscope. The re- sults show that the orientation of austenite grains weakens, and a-martensite transformation occurs during SMAT. During the process of SMAT, the deformation twins generate and divide the austenite grains firstly~ then a-martens- ite transformation occurs beside and between the twin bundles~ after that the martensite and austenite grains rotate to accommodate deformation, and the orientations of martensite and between martensite and residual austenite increase; lastly the randomly oriented and uniform-sized nanocrystallir^e layers are formed under continuous deformation. 展开更多
关键词 SMAT technology twinning stacking fault energy deformation twin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部