In this paper, the development of a vertical axis hydrokinetic twin turbine for harvesting energy from flowing water in man-made channels is described. The Technology Readiness Level (TRL) assessment procedure, develo...In this paper, the development of a vertical axis hydrokinetic twin turbine for harvesting energy from flowing water in man-made channels is described. The Technology Readiness Level (TRL) assessment procedure, developed by NASA and modified by the US Department of Energy, is followed and it is shown that the hydrokinetic turbine successfully reaches TRL 7, which is a full-scale, similar (prototypical) system demonstrated in a relevant environment. The concept of the twin turbine (TRL 1 - 3) is first validated and tested using a 1:10 scale laboratory model at Cardiff University and efficiencies of up to 75% are achieved (TRL 4 - 5). In order to justify system functionality and performance in a relevant environment as well as up-scalability, a 1:3 scale model of the twin turbine is implemented and tested in a discharge channel of a water treatment plant in Atlanta, thereby achieving TRL6. This paved the way for an application in the form of an array of ten full-scale twin turbine prototypes, including all relevant components such as housing, drive-train, gear-box and generator. Successful deployment and testing in the South Boulder Canal near Denver means that the hydrokinetic twin turbine system reached TRL7.展开更多
Two problems were found in recent applications of TRLs in aerospace projects.One is how to accurately evaluate the readiness level of a given technology in a project using the TRL scale.The other is how to deal with t...Two problems were found in recent applications of TRLs in aerospace projects.One is how to accurately evaluate the readiness level of a given technology in a project using the TRL scale.The other is how to deal with the diversity(different types) of technologies involved in an aerospace project.To solve these problems,a technology readiness assessment(TRA) method based on three maturity characteristics is established,and this method is adapted according to the features of different types of technologies.The proposed method has been successfully applied to aerospace projects and enables great effectiveness and accuracy in assessing new technologies.展开更多
Considering current space debris situation in outer space environment,different methods for debris removal missions are proposed.In addition,advanced technologies are needed to be demonstrated for future human space e...Considering current space debris situation in outer space environment,different methods for debris removal missions are proposed.In addition,advanced technologies are needed to be demonstrated for future human space exploration programs.The main issue regarding to these missions is high mission cost for both debris removal missions and space environmental tests to achieve high maturity level for new space-usable technologies.Since,these missions are unavoidable for future of human space activities,a solution which can tackle these challenges is necessary.This paper will address to an idea which has the possibility to give a solution for facilitating technology readiness level(TRL)maturity tests by debris removal mission platform consideration.展开更多
An integration-centric approach is proposed to handle inadequate information in the system readiness level (SRL) assessment using the evidential reasoning (ER) algorithm. Current SRL assessment approaches cannot b...An integration-centric approach is proposed to handle inadequate information in the system readiness level (SRL) assessment using the evidential reasoning (ER) algorithm. Current SRL assessment approaches cannot be applied to handle inadequate information as the input. The ER-based approach is proposed to synthesize inadequate input information and an integration-centric perspective is applied to reduce the computational complexity. Two case studies are performed to validate the efficiency of the proposed approach. And these studies are also performed to study how the inadequate information will affect the assessment result. And the differences caused by the system's structure. The importance of the system's structure in the SRL assessment is demonstrated and the contributions made in this study are summarized as conclusions.展开更多
This paper builds on exploring the applications of biomediated pathways to solve geotechnical challenges.First,the state of the art of biological remediation strategies including microbial remediation and phytoremedia...This paper builds on exploring the applications of biomediated pathways to solve geotechnical challenges.First,the state of the art of biological remediation strategies including microbial remediation and phytoremediation have been introduced and critically reviewed in the context of decontaminating the soils.Next,biopolymerisation,biomineralisation and bioneutralisation processes have been depicted with a special emphasis on the applications including but not limited to soil stabilisation,soil erosion prevention,anti-desertification and pH neutralisation.Each of these methods have their own limitations and bottlenecks while scaling up,and these challenges have been summarised and some possible paths to overcome the challenges have also been discussed.The state of the art of electromagnetic(EM)monitoring methods to capture the effects of biomediation on spatio-temporal soil properties are then highlighted as a non-invasive and rapid pathway to track the progress of biomediated soil processes.Finally,each of the technologies discussed have been evaluated for their maturity level using the principles of technology readiness level(TRL).A majority of the technologies amounting to around 77%are still in the TRL 4e7,i.e.in the valley of death.It is thus evident that development of these technologies needs to be supported with appropriate funding for improving their maturity to a level of industrial deployment.展开更多
Contemporary system maturity assessment approaches have failed to provide robust quantitative system evaluations resulting in increased program costs and developmental risks.Standard assessment metrics,such as Technol...Contemporary system maturity assessment approaches have failed to provide robust quantitative system evaluations resulting in increased program costs and developmental risks.Standard assessment metrics,such as Technology Readiness Levels(TRL),do not sufficiently evaluate increasingly complex systems.The System Readiness Level(SRL)is a newly developed system development metric that is a mathematical function of TRL and Integration Readiness Level(IRL) values for the components and connections of a particular system.SRL acceptance has been hindered because of concerns over SRL mathematical operations that may lead to inaccurate system readiness assessments.These inaccurate system readiness assessments are called readiness reversals.A new SRL calculation method using incidence matrices is proposed to alleviate these mathematical concerns.The presence of SRL readiness reversal is modeled for four SRL calculation methods across several system configurations.Logistic regression analysis demonstrates that the proposed Incidence Matrix SRL(IMSRL)method has a decreased presence of readiness reversal than other approaches suggested in the literature.Viable SRL methods will foster greater SRL adoption by systems engineering professionals and will support system development risk reduction goals.展开更多
文摘In this paper, the development of a vertical axis hydrokinetic twin turbine for harvesting energy from flowing water in man-made channels is described. The Technology Readiness Level (TRL) assessment procedure, developed by NASA and modified by the US Department of Energy, is followed and it is shown that the hydrokinetic turbine successfully reaches TRL 7, which is a full-scale, similar (prototypical) system demonstrated in a relevant environment. The concept of the twin turbine (TRL 1 - 3) is first validated and tested using a 1:10 scale laboratory model at Cardiff University and efficiencies of up to 75% are achieved (TRL 4 - 5). In order to justify system functionality and performance in a relevant environment as well as up-scalability, a 1:3 scale model of the twin turbine is implemented and tested in a discharge channel of a water treatment plant in Atlanta, thereby achieving TRL6. This paved the way for an application in the form of an array of ten full-scale twin turbine prototypes, including all relevant components such as housing, drive-train, gear-box and generator. Successful deployment and testing in the South Boulder Canal near Denver means that the hydrokinetic twin turbine system reached TRL7.
文摘Two problems were found in recent applications of TRLs in aerospace projects.One is how to accurately evaluate the readiness level of a given technology in a project using the TRL scale.The other is how to deal with the diversity(different types) of technologies involved in an aerospace project.To solve these problems,a technology readiness assessment(TRA) method based on three maturity characteristics is established,and this method is adapted according to the features of different types of technologies.The proposed method has been successfully applied to aerospace projects and enables great effectiveness and accuracy in assessing new technologies.
基金Supported by the National Natural Science Foundation of China(11572037)
文摘Considering current space debris situation in outer space environment,different methods for debris removal missions are proposed.In addition,advanced technologies are needed to be demonstrated for future human space exploration programs.The main issue regarding to these missions is high mission cost for both debris removal missions and space environmental tests to achieve high maturity level for new space-usable technologies.Since,these missions are unavoidable for future of human space activities,a solution which can tackle these challenges is necessary.This paper will address to an idea which has the possibility to give a solution for facilitating technology readiness level(TRL)maturity tests by debris removal mission platform consideration.
基金supported by the National Natural Science Foundation of China (70901074 71001104)
文摘An integration-centric approach is proposed to handle inadequate information in the system readiness level (SRL) assessment using the evidential reasoning (ER) algorithm. Current SRL assessment approaches cannot be applied to handle inadequate information as the input. The ER-based approach is proposed to synthesize inadequate input information and an integration-centric perspective is applied to reduce the computational complexity. Two case studies are performed to validate the efficiency of the proposed approach. And these studies are also performed to study how the inadequate information will affect the assessment result. And the differences caused by the system's structure. The importance of the system's structure in the SRL assessment is demonstrated and the contributions made in this study are summarized as conclusions.
文摘This paper builds on exploring the applications of biomediated pathways to solve geotechnical challenges.First,the state of the art of biological remediation strategies including microbial remediation and phytoremediation have been introduced and critically reviewed in the context of decontaminating the soils.Next,biopolymerisation,biomineralisation and bioneutralisation processes have been depicted with a special emphasis on the applications including but not limited to soil stabilisation,soil erosion prevention,anti-desertification and pH neutralisation.Each of these methods have their own limitations and bottlenecks while scaling up,and these challenges have been summarised and some possible paths to overcome the challenges have also been discussed.The state of the art of electromagnetic(EM)monitoring methods to capture the effects of biomediation on spatio-temporal soil properties are then highlighted as a non-invasive and rapid pathway to track the progress of biomediated soil processes.Finally,each of the technologies discussed have been evaluated for their maturity level using the principles of technology readiness level(TRL).A majority of the technologies amounting to around 77%are still in the TRL 4e7,i.e.in the valley of death.It is thus evident that development of these technologies needs to be supported with appropriate funding for improving their maturity to a level of industrial deployment.
文摘Contemporary system maturity assessment approaches have failed to provide robust quantitative system evaluations resulting in increased program costs and developmental risks.Standard assessment metrics,such as Technology Readiness Levels(TRL),do not sufficiently evaluate increasingly complex systems.The System Readiness Level(SRL)is a newly developed system development metric that is a mathematical function of TRL and Integration Readiness Level(IRL) values for the components and connections of a particular system.SRL acceptance has been hindered because of concerns over SRL mathematical operations that may lead to inaccurate system readiness assessments.These inaccurate system readiness assessments are called readiness reversals.A new SRL calculation method using incidence matrices is proposed to alleviate these mathematical concerns.The presence of SRL readiness reversal is modeled for four SRL calculation methods across several system configurations.Logistic regression analysis demonstrates that the proposed Incidence Matrix SRL(IMSRL)method has a decreased presence of readiness reversal than other approaches suggested in the literature.Viable SRL methods will foster greater SRL adoption by systems engineering professionals and will support system development risk reduction goals.