Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South C...Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South China Sea,this study analyzed the structural units,tectonic feature and geodynamics of the sedimentary basin.The new data suggests that the Nan0 an Basin is a rift basin oriented in the NE-SW direction,rather than a pull-apart basin induced by strike-slip faults along the western margin.The basin is a continuation of the rifts in the southwest South China Sea since the late Cretaceous.It continued rifting until the middle Miocene,even though oceanic crust occurred in the Southwest Subbasin.However,it had no transfer surface at the end of spreading,where it was characterized by a late middle Miocene unconformity(reflector T3).The Nan'an Basin can be divided into eight structural units by a series of NE-striking faults.This study provides evidences to confirm the relative importance and interplay between regional strike-slips and orthogonal displacement during basin development and deformation.The NE-SW-striking dominant rift basin indicates that the geodynamic drivers of tectonic evolution in the western margin of the South China Sea did not have a large strike-slip mechanism.Therefore,we conclude that a large strike-slip fault system did not exist in the western margin of the South China Sea.展开更多
In NW Himalayas, the suture zone between the collided Indian and the Karakoram plates is occupied by crust of the Cretaceous Kohistan Island\|Arc Terrane [1] . Late Cretaceous (about 90Ma) accretion with the southern ...In NW Himalayas, the suture zone between the collided Indian and the Karakoram plates is occupied by crust of the Cretaceous Kohistan Island\|Arc Terrane [1] . Late Cretaceous (about 90Ma) accretion with the southern margin of the Karakoram Plate at the site of the Shyok Suture Zone turned Kohistan to become an Andean\|type margin. The Neotethys was completely subducted at the southern margin of Kohistan by Early Tertiary, leading to collision between Kohistan and continental crust of the Indian plate at the site of the Main mantle thrust.More than 80% of the Kohistan terrane comprises plutonic rocks of (1) ultramafic to gabbroic composition forming the basal crust of the intra\|oceanic stage of the island arc, and (2) tonalite\|granodiorite\|granite composition belong to the Kohistan Batholith occupying much of the intermediate to shallow crust of the terrane mostly intruded in the Andean\|type margin stage [2] . Both these stages of subduction\|related magmatism were associated with volcanic and sedimentary rocks formed in Late Cretaceous and Early Tertiary basins. This study addresses tectonic configuration of Early Tertiary Drosh basin exposed in NW parts of the Kohistan terrane, immediately to the south of the Shyok Suture Zone.展开更多
Qilian orogenic belt is a typical orogenic belt formed by polycyclic collisions between the North China plate and Qaidam microplate. Qilian ocean originated from the rift of the late Proterozoic Rodinia continent(Pang...Qilian orogenic belt is a typical orogenic belt formed by polycyclic collisions between the North China plate and Qaidam microplate. Qilian ocean originated from the rift of the late Proterozoic Rodinia continent(Pangea\|850), evolved through rift basin and became an archipelagic ocean in the Caledonian stage. The Lower Proterozoic strata in Qilian area are mid\|high\|rank metamorphic rocks that constitute the metamorphic basement of the area. The “Huangyuan Movement" (in South Qilian and Central Qilian) and "Alashan Movement" (in North Qilian) in the latest Late Proterozoic formed a regional unconformity. The middle Proterozoic in the area are mudstones and carbonate rocks with stromatolites and ooids. The Qingbaikou System of the upper Proterozoic in the North Qilian and Corridor region is also mudstone and carbonate rock with stromatolites. The Qingbaikou System in Central Qilian is sandstones and mudstones. There are alkaline and tholeiite in the Sinian System in North Qilian and Corridor. The contact between Qingbaikou System and Sinian System is a regional unconformity (Quanji Movement). Qilian ocean began to rift away in Caledonian tectonic stage on the Pre\|Sinian basement.展开更多
Based on comprehensive analysis of typical outcrops, latest deep wells drilled and high resolution seismic profiles in the study area, we examined the geologic structure of the Kelameili range, and analyzed the struct...Based on comprehensive analysis of typical outcrops, latest deep wells drilled and high resolution seismic profiles in the study area, we examined the geologic structure of the Kelameili range, and analyzed the structural relationship between the Kelameili range and the Dajing depression, and discussed the tectonic-sedimentary framework in different periods of Carboniferous by using axial surface analysis and balanced section techniques. Understandings in three aspects are achieved:(1) The study area experienced five stages of compressional tectonic movements, the Early Carboniferous, the Late Carboniferous, the Middle-Late Permian, Late Cretaceous and Paleogene, and three stages of extensional tectonic movements, the middle-late Early Carboniferous, the middle-late Late Carboniferous and Early Permian. At the end of the Early Permian and the Mid-Late Cretaceous, the tectonic wedges moved southward respectively.(2) The Kelameili range and Dajing depression had the first basin-range coupling during the early Early Carboniferous, basin-range decoupling in the following middle-late Early Carboniferous to the Early Permian, then basin-range strong recoupling in the Middle Permian, and the basin-range coupling had been inherited in the subsequent Indosinian, Yanshanian and Himalayan movements.(3) During the early Early Carboniferous, the study area was a foreland basin where the Dishuiquan Formation source rock developed;in mid-late Early Carboniferous, a series of NW-and NWW-trending half-garben fault basins developed, where the Songkaersu Formation volcanic reservoir formed. In late Early Carboniferous, the study area entered into depression basin stage after rifting, and the Shuangjingzi Formation source rock developed;in the mid-late Late Carboniferous, Batamayineishan fault basin emerged, and the Upper-Carboniferous volcanic reservoir was formed, affected by the tectonic compression during late Carboniferous and Mid-Permian, the Batamayineishan Formation suffered extensive erosion, and only partially remains in the piedmont depression zone.展开更多
Jurassic deposition was extensively developed in the northern Qaidam basin.According to sequence stratigraphical analysis of outcrops,the Jurassic profile in the Dameigou area can be divided into 6 sequences.Sequences...Jurassic deposition was extensively developed in the northern Qaidam basin.According to sequence stratigraphical analysis of outcrops,the Jurassic profile in the Dameigou area can be divided into 6 sequences.Sequences 1 and 4 consist of lowstand,water transgression and highstand systems tracts,and sequences 2,3 and 5 consist of lowstand and transgression systems tracts.However,sequence 6 only consists of a lowstand systems tract.The development of depositional sequences is controlled by lake level changes and basement faulting,which continued to be active in the Jurassic. The result of sedimentary- tectonic evolution research indicates that the Qaidam Basin is a fault subsidence.This kind of basin framework determined that the coal- forming environment would occur on the north side of the northern boundary fault of the Qaidam Basin and on the south side of the Lingjian fault, and the source rock would develop in the central subsidence belt between the two faults.展开更多
Prolonged extensional regime in peninsular India resulted in formation of rift and grabens,elongated basins and Gondwana sedimentation along them.Downward progression of rift related faults caused decompression
The Triassic petrostratigraphic system and chronologic stratigraphic sketch have been updated and perfected in the Qiangtang area, Qinghai-Tibet Plateau based on the integrated 1:250000 regional geological survey and...The Triassic petrostratigraphic system and chronologic stratigraphic sketch have been updated and perfected in the Qiangtang area, Qinghai-Tibet Plateau based on the integrated 1:250000 regional geological survey and the latest research progeny. The first finished 1:3000000 Triassic tectonic lithofacies paleogeographic maps in the Qiangtang area shows that the Triassic tectonic unit in the Qiangtang area can been divided into three parts from north to south: northern Qiangtang block; Longmucuo-Shuanghu suture zone; and southern Qiangtang block. The early-middle Triassic tectonic paleogeography in the Qiangtang area is divides into three sub- units: northern Qiangtang passive continental marginal basin (NQPB), Longmucuo- Shuanghu residual basin (LSRB) and southern Qiangtang residual basin (SQRB). The NQPB can be subdivided into four paleogeography units: The Tanggula-Zangxiahe shallow and bathyal sea; The Wangquanhe- Yingshuiquan carbonate platform; The Rejuechaka-Jiangaidarina littoral- shallow sea; and Qiangtang central uplift. The above units of The NQPB possess EW trend, geomorphology high in the south and low in the north, the seawater depth northward. The basinal paleo-current direction is unidirectional, and basinal tectonic subsidence center is in accord with the depo-center, located in the Tanggula-Zangxiahe belt, north of the basin. The sedimentation and tectonic evolution of the NQPB are characterized with passive continental marginal basin. The Qiangtang central orogenic denuded area (ancient land) may be as a sedimentary materials source of the NQPB. SQRB can be divided into two units: Duoma carbonate platform and southern Qiangtang neritic-deep sea. The late Triassic tectonic paleogeography in the Qiangtang area is the framework of the "archipelagic-sea" as a whole, and it may be divided into three sub-units: northern Qiangtang back- arc foreland basin(NQFB), Longmucuo-Shuanghu residual basin(LSRB) and southern Qiangtang marginal-sea basin(SQMB). Thereinto, NQFB can be divided into five paleogeography units: the Zangxiahe-Mingjinghu bathyal basin characterized with the flysch; the Tanggula shallow-sea shelf with the fine-clastics; the Juhuashang platform with carbonates; the Tumenggela-Shuanghu coastal- delta with coal-bearing clastics and the Nadigangri- Geladandong arc with volcanics and tuffs. In transverse section, the NQFB fills is wedge-shaped, and the sediments characterized with thicker in north and thinner in south, and with double materials derived from the Ruolagangri orogenic belt in north and the Shuanghu central orogenic belt in south. The late Triassic depocenter of NQFB is located in the middle of the basin, the Yakecuo-Bandaohu-Quemocuo belt, but the subsidence center in the north, the Zangxiahe- Mingjinghu belt, and basinal tectonic subsidence center not concordant with the depo-center. Late Triassic, the SQMB may be divided into three sub-units: Xiaochaka shallow-sea; Riganpeicuo platform~ and South Qiangtang southern bathyal basin. In transverse section, the basement of the SQMB is characterized with low in the northern and southern, but high in the middle; forming wedge shaped sediments with thicker in the north and thinner in the south; the sedimentary materials derived from the Qiangtang central uplift and Nadigangri arcs in north. The late Triassic subsidence centre of the SQMB is located in the northern (Xiaochaka area), but the depocenter in the southern (Qixiancuo Suobucha area). The sedimentation and tectonic evolution of the SQMB are characterized with marginal sea.展开更多
The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolu...The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolution. One representative of the syn-sedimentary extension structure is syn-sedimentary boudinage structure, while the typical example of the syn-sedimentary compression structure is compression sand pillows or compression wrinkles. The former shows NW-SE-trendlng contemporaneous extension events related to earthquakes in the rift basin near a famous Fe-Nb-REE deposit in northern China during the Early Paleozoic (or Mesoproterozoic as proposed by some researches), while the latter indicates NE-SW-trending contemporaneous compression activities related to earthquakes in the Middle Triassic in the Nanpanjiang remnant basin covering south Guizhou, northwestern Guangxi and eastern Yunnan in southwestern China. The syn-sedimentary boudinage structure was found in an earthquake slump block in the lower part of the Early Paleozoic Sailinhudong Group, 20 km to the southeast of Bayan Obo, Inner Mongolia, north of China. The slump block is composed of two kinds of very thin layers-pale-gray micrite (microcrystalline limestone) of 1-2 cm thick interbedded with gray muddy micrite layers with the similar thickness. Almost every thin muddy micrite layer was cut into imbricate blocks or boudins by abundant tiny contemporaneous faults, while the interbedded micrite remain in continuity. Boudins form as a response to layer-parallel extension (and/or layer-perpendicular flattening) of stiff layers enveloped top and bottom by mechanically soft layers. In this case, the imbricate blocks cut by the tiny contemporaneous faults are the result of abrupt horizontal extension of the crust in the SE-NW direction accompanied with earthquakes. Thus, the rock block is, in fact, a kind of seismites. The syn-sedimentary boudins indicate that there was at least a strong earthquake belt on the southeast side of the basin during the early stage of the Sailinhudong Group. This may be a good constraint on the tectonic evolution of the Bayan Obo area during the Early Paleozoic time. The syn-sedimentary compression structure was found in the Middle Triassic flysch in the Nanpanjiang Basin. The typical structures are compression sand pillows and compression wrinkles. Both of them were found on the bottoms of sand units and the top surface of the underlying mud units. In other words, the structures were found only in the interfaces between the graded sand layer and the underlying mud layer of the flysch. A deformation experiment with dough was conducted, showing that the tectonic deformation must have been instantaneous one accompanied by earthquakes. The compression sand pillows or wrinkles showed uniform directions along the bottoms of the sand layer in the flysch, revealing contemporaneous horizontal compression during the time between deposition and diagenesis of the related beds. The Nanpanjiang Basin was affected, in general, with SSW-NNE compression during the Middle Triassic, according to the syn-sedimentary compression structure. The two kinds of syn-sedimentary tectonic deformation also indicate that the related basins belong to a rift basin and a remnant basin, respectively, in the model of Wilson Cycle.展开更多
The Yangtze plate, extending from east to west in southern China, was formed about 800 Ma ago. Since the Sinian, two aulacogens trending east-northeast and connected at the east ends, have been initiated in the Jiangs...The Yangtze plate, extending from east to west in southern China, was formed about 800 Ma ago. Since the Sinian, two aulacogens trending east-northeast and connected at the east ends, have been initiated in the Jiangsu-Zhejiang-Anhui region on the east margin of the plate with a sedimentary sequence up to 10,000 m in thickness. At a later stage of sedimentologic evolution, flysch and molasse were produced. The flyseh was accumulated in the Late Ordovician, when the two aulacogens became bays that opened to the east; the elastic materials were derived from the Yangtze oldland on the northern and southern sides of the basins. The molasse was accumulated from the terminal Late Ordovician to the Middle Ordovician; the clastie materials came from an uplifted orogenic belt in the east. This indicates that a major change in the tectonic pattern of the basins has taken place.展开更多
Kekexili basin, located in Northern Qinghai—Xizang plateau, has an area of over 4000km\+2 and is the largest Paleogene land facies basin in the plateau. With NWW\|SEE trend, Kekexili basin extends along the north sid...Kekexili basin, located in Northern Qinghai—Xizang plateau, has an area of over 4000km\+2 and is the largest Paleogene land facies basin in the plateau. With NWW\|SEE trend, Kekexili basin extends along the north side of the Jinshajiang suture. Its sediments, Fenghuoshan group, formed in E 1—E 3, show a shape of wedge with big thickness in south and small thickness in north. There are four sedimentary facies; fan\|delta and alluvial facies that occur in south, lake and lake\|delta facies, which do in north, in this basin. The north\|dipping Jinshajiang normal faults on the south margin of the basin have controlled the developments of the basin. The S—N compression at the end of E3 strongly folded the basin strata and transformed Jinshajiang normal faults into thrusts. In N1, widespread denudation occurred in the whole plateau. During N 2—Q, Kekexili area uplifted along with the whole plateau, besides, the thrusts in the basin showed coherent activity. We propose a geodynamical model for explaining the basin development. In early E,India plate, due to its colliding Eurasia plate, stopped its ocean crust subduction northward, then the subducted ocean lithosphere breaking away made the south margin area, most possibly to the south of Jinshajiang suture, of Eurasia plate isostatically uplift, so the north\|dipping Jinshajiang suture acted as normal faults and controled the north basin development. In late E, the isostatic uplift finished, the basin also gradually terminated its development .At the end of E, Jinshajiang normal faults became thrusts and the basin strata were folded under the northward compression of India plate. In the N1, India plate started incontinental subduction, the lower crust and lower mantle lithosphere of Qinghai—Xizang area underwent more intensive compression and deformation than its upper crust, and the induced transversal expansion in the lower lithosphere uplifted the upper crust and decreased its horizontal stress, which conduced the upper crust undergo denudation. During N 2—Q, convective removal of the lower mantle lithosphere of Qinghai\|Xizang area led to rapid uplift of this area.展开更多
It has been analyzed the influence of the tectonic ambient shear stress value on response spectrum based on the previous theory. Based on the prediction equation BJF94 presented by the famous American researchers, CLB...It has been analyzed the influence of the tectonic ambient shear stress value on response spectrum based on the previous theory. Based on the prediction equation BJF94 presented by the famous American researchers, CLB20, a new prediction formula is proposed by us, where it is introduced the influence of tectonic ambient shear stress value on response spectrum. BJF94 is the prediction equation, which mainly depends on strong ground motion data from western USA, while the prediction equation SEA99 is based on the strong ground motion data from exten-sional region all over the world. Comparing these two prediction equations in detail, it is found that after BJF94′s prediction value lg(Y) minus 0.16 logarithmic units, the value is very close to SEA99′s one. This case demonstrates that lg(Y) in extensional region is smaller; the differences of prediction equation are mainly owe to the differences of tectonic ambient shear stress value. If the factor of tectonic ambient shear stress value is included into the pre-diction equation, and the magnitude is used seismic moment magnitude to express, which is universal used around the world, and the distance is used the distance of fault project, which commonly used by many people, then re-gional differences of prediction equation will become much less, even vanish, and it can be constructed the uni-versal prediction equation proper to all over the world. The error in the earthquake-resistant design in China will be small if we directly use the results of response spectrum of USA (e.g. BJF94 or SEA99).展开更多
Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration a...Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration and development.Based on high-resolution 3D seismic data,the Miocene channel system in the deep-water Taranaki Basin,New Zealand,was analyzed by using seismic interpretation techniques such as interlayer attribute extraction and strata slicing.The channel system was divided into five composite channels(CC-I to CC-V)according to four secondary level channel boundaries,and sedimentary elements such as channels,slump deposits,inner levees,mass transport deposits,and hemipelagic drape deposits were identified in the channel system.The morphological characteristics of several composite channels exhibited stark variances,and the overall morphology of the composite channels changed from relatively straight to highly sinuous to relatively straight.The evolution of the composite channels involved a gradual and repeated process of erosion and filling,and the composite channels could be divided into three evolutionary stages:initial erosion-filling,later erosion-filling(multistage),and channel abandonment.The middle Miocene channel system may have formed as a consequence of combined regional tectonic activity and global climatic change,and its intricate morphological alterations may have been influenced by the channel's ability to self-regulate and gravity flow properties.When studying the sedimentary evolution of a large-scale deep-water channel system in the Taranaki Basin during the Oligocene-Miocene,which transitioned from a passive margin to plate convergence,it can be understood how tectonic activity affected the channel and can also provide a theoretical reference for the evolution of the deepwater channels in areas with similar tectonic conversion environments around the world.展开更多
基金This research was financially supported by Natural Science Foundation of China(U1701245,No.91228208)CGS project(DD20190213)CNPC project(kt 2021-02-02).
文摘Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South China Sea,this study analyzed the structural units,tectonic feature and geodynamics of the sedimentary basin.The new data suggests that the Nan0 an Basin is a rift basin oriented in the NE-SW direction,rather than a pull-apart basin induced by strike-slip faults along the western margin.The basin is a continuation of the rifts in the southwest South China Sea since the late Cretaceous.It continued rifting until the middle Miocene,even though oceanic crust occurred in the Southwest Subbasin.However,it had no transfer surface at the end of spreading,where it was characterized by a late middle Miocene unconformity(reflector T3).The Nan'an Basin can be divided into eight structural units by a series of NE-striking faults.This study provides evidences to confirm the relative importance and interplay between regional strike-slips and orthogonal displacement during basin development and deformation.The NE-SW-striking dominant rift basin indicates that the geodynamic drivers of tectonic evolution in the western margin of the South China Sea did not have a large strike-slip mechanism.Therefore,we conclude that a large strike-slip fault system did not exist in the western margin of the South China Sea.
文摘In NW Himalayas, the suture zone between the collided Indian and the Karakoram plates is occupied by crust of the Cretaceous Kohistan Island\|Arc Terrane [1] . Late Cretaceous (about 90Ma) accretion with the southern margin of the Karakoram Plate at the site of the Shyok Suture Zone turned Kohistan to become an Andean\|type margin. The Neotethys was completely subducted at the southern margin of Kohistan by Early Tertiary, leading to collision between Kohistan and continental crust of the Indian plate at the site of the Main mantle thrust.More than 80% of the Kohistan terrane comprises plutonic rocks of (1) ultramafic to gabbroic composition forming the basal crust of the intra\|oceanic stage of the island arc, and (2) tonalite\|granodiorite\|granite composition belong to the Kohistan Batholith occupying much of the intermediate to shallow crust of the terrane mostly intruded in the Andean\|type margin stage [2] . Both these stages of subduction\|related magmatism were associated with volcanic and sedimentary rocks formed in Late Cretaceous and Early Tertiary basins. This study addresses tectonic configuration of Early Tertiary Drosh basin exposed in NW parts of the Kohistan terrane, immediately to the south of the Shyok Suture Zone.
文摘Qilian orogenic belt is a typical orogenic belt formed by polycyclic collisions between the North China plate and Qaidam microplate. Qilian ocean originated from the rift of the late Proterozoic Rodinia continent(Pangea\|850), evolved through rift basin and became an archipelagic ocean in the Caledonian stage. The Lower Proterozoic strata in Qilian area are mid\|high\|rank metamorphic rocks that constitute the metamorphic basement of the area. The “Huangyuan Movement" (in South Qilian and Central Qilian) and "Alashan Movement" (in North Qilian) in the latest Late Proterozoic formed a regional unconformity. The middle Proterozoic in the area are mudstones and carbonate rocks with stromatolites and ooids. The Qingbaikou System of the upper Proterozoic in the North Qilian and Corridor region is also mudstone and carbonate rock with stromatolites. The Qingbaikou System in Central Qilian is sandstones and mudstones. There are alkaline and tholeiite in the Sinian System in North Qilian and Corridor. The contact between Qingbaikou System and Sinian System is a regional unconformity (Quanji Movement). Qilian ocean began to rift away in Caledonian tectonic stage on the Pre\|Sinian basement.
基金Supported by the National Natural Science Foundation of China(41702110)China National Science and Technology Major Project(2017ZX05001-001)National Key Research and Development Project(2017YFC0601405).
文摘Based on comprehensive analysis of typical outcrops, latest deep wells drilled and high resolution seismic profiles in the study area, we examined the geologic structure of the Kelameili range, and analyzed the structural relationship between the Kelameili range and the Dajing depression, and discussed the tectonic-sedimentary framework in different periods of Carboniferous by using axial surface analysis and balanced section techniques. Understandings in three aspects are achieved:(1) The study area experienced five stages of compressional tectonic movements, the Early Carboniferous, the Late Carboniferous, the Middle-Late Permian, Late Cretaceous and Paleogene, and three stages of extensional tectonic movements, the middle-late Early Carboniferous, the middle-late Late Carboniferous and Early Permian. At the end of the Early Permian and the Mid-Late Cretaceous, the tectonic wedges moved southward respectively.(2) The Kelameili range and Dajing depression had the first basin-range coupling during the early Early Carboniferous, basin-range decoupling in the following middle-late Early Carboniferous to the Early Permian, then basin-range strong recoupling in the Middle Permian, and the basin-range coupling had been inherited in the subsequent Indosinian, Yanshanian and Himalayan movements.(3) During the early Early Carboniferous, the study area was a foreland basin where the Dishuiquan Formation source rock developed;in mid-late Early Carboniferous, a series of NW-and NWW-trending half-garben fault basins developed, where the Songkaersu Formation volcanic reservoir formed. In late Early Carboniferous, the study area entered into depression basin stage after rifting, and the Shuangjingzi Formation source rock developed;in the mid-late Late Carboniferous, Batamayineishan fault basin emerged, and the Upper-Carboniferous volcanic reservoir was formed, affected by the tectonic compression during late Carboniferous and Mid-Permian, the Batamayineishan Formation suffered extensive erosion, and only partially remains in the piedmont depression zone.
文摘Jurassic deposition was extensively developed in the northern Qaidam basin.According to sequence stratigraphical analysis of outcrops,the Jurassic profile in the Dameigou area can be divided into 6 sequences.Sequences 1 and 4 consist of lowstand,water transgression and highstand systems tracts,and sequences 2,3 and 5 consist of lowstand and transgression systems tracts.However,sequence 6 only consists of a lowstand systems tract.The development of depositional sequences is controlled by lake level changes and basement faulting,which continued to be active in the Jurassic. The result of sedimentary- tectonic evolution research indicates that the Qaidam Basin is a fault subsidence.This kind of basin framework determined that the coal- forming environment would occur on the north side of the northern boundary fault of the Qaidam Basin and on the south side of the Lingjian fault, and the source rock would develop in the central subsidence belt between the two faults.
文摘Prolonged extensional regime in peninsular India resulted in formation of rift and grabens,elongated basins and Gondwana sedimentation along them.Downward progression of rift related faults caused decompression
基金supported by the Project of the Mesozoic Tectonic Lithofacies Paleogeographic Mapping and Synthesize Research in Qinghai-Tibet Plateau, China Geological Survey(CGS),Ministry of Land and Resources, Project No-1212010610101the Project of the Typical Stratigraphical Sections Research in Qinghai-Tibet Plateau,CGS , Project No-1212011121257
文摘The Triassic petrostratigraphic system and chronologic stratigraphic sketch have been updated and perfected in the Qiangtang area, Qinghai-Tibet Plateau based on the integrated 1:250000 regional geological survey and the latest research progeny. The first finished 1:3000000 Triassic tectonic lithofacies paleogeographic maps in the Qiangtang area shows that the Triassic tectonic unit in the Qiangtang area can been divided into three parts from north to south: northern Qiangtang block; Longmucuo-Shuanghu suture zone; and southern Qiangtang block. The early-middle Triassic tectonic paleogeography in the Qiangtang area is divides into three sub- units: northern Qiangtang passive continental marginal basin (NQPB), Longmucuo- Shuanghu residual basin (LSRB) and southern Qiangtang residual basin (SQRB). The NQPB can be subdivided into four paleogeography units: The Tanggula-Zangxiahe shallow and bathyal sea; The Wangquanhe- Yingshuiquan carbonate platform; The Rejuechaka-Jiangaidarina littoral- shallow sea; and Qiangtang central uplift. The above units of The NQPB possess EW trend, geomorphology high in the south and low in the north, the seawater depth northward. The basinal paleo-current direction is unidirectional, and basinal tectonic subsidence center is in accord with the depo-center, located in the Tanggula-Zangxiahe belt, north of the basin. The sedimentation and tectonic evolution of the NQPB are characterized with passive continental marginal basin. The Qiangtang central orogenic denuded area (ancient land) may be as a sedimentary materials source of the NQPB. SQRB can be divided into two units: Duoma carbonate platform and southern Qiangtang neritic-deep sea. The late Triassic tectonic paleogeography in the Qiangtang area is the framework of the "archipelagic-sea" as a whole, and it may be divided into three sub-units: northern Qiangtang back- arc foreland basin(NQFB), Longmucuo-Shuanghu residual basin(LSRB) and southern Qiangtang marginal-sea basin(SQMB). Thereinto, NQFB can be divided into five paleogeography units: the Zangxiahe-Mingjinghu bathyal basin characterized with the flysch; the Tanggula shallow-sea shelf with the fine-clastics; the Juhuashang platform with carbonates; the Tumenggela-Shuanghu coastal- delta with coal-bearing clastics and the Nadigangri- Geladandong arc with volcanics and tuffs. In transverse section, the NQFB fills is wedge-shaped, and the sediments characterized with thicker in north and thinner in south, and with double materials derived from the Ruolagangri orogenic belt in north and the Shuanghu central orogenic belt in south. The late Triassic depocenter of NQFB is located in the middle of the basin, the Yakecuo-Bandaohu-Quemocuo belt, but the subsidence center in the north, the Zangxiahe- Mingjinghu belt, and basinal tectonic subsidence center not concordant with the depo-center. Late Triassic, the SQMB may be divided into three sub-units: Xiaochaka shallow-sea; Riganpeicuo platform~ and South Qiangtang southern bathyal basin. In transverse section, the basement of the SQMB is characterized with low in the northern and southern, but high in the middle; forming wedge shaped sediments with thicker in the north and thinner in the south; the sedimentary materials derived from the Qiangtang central uplift and Nadigangri arcs in north. The late Triassic subsidence centre of the SQMB is located in the northern (Xiaochaka area), but the depocenter in the southern (Qixiancuo Suobucha area). The sedimentation and tectonic evolution of the SQMB are characterized with marginal sea.
基金This paper was sponsored by the National Natural Science Foundation of China(grant No.40272049)Doctor Research Foundation of China University of Petroleum(Project No.Y020109).
文摘The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolution. One representative of the syn-sedimentary extension structure is syn-sedimentary boudinage structure, while the typical example of the syn-sedimentary compression structure is compression sand pillows or compression wrinkles. The former shows NW-SE-trendlng contemporaneous extension events related to earthquakes in the rift basin near a famous Fe-Nb-REE deposit in northern China during the Early Paleozoic (or Mesoproterozoic as proposed by some researches), while the latter indicates NE-SW-trending contemporaneous compression activities related to earthquakes in the Middle Triassic in the Nanpanjiang remnant basin covering south Guizhou, northwestern Guangxi and eastern Yunnan in southwestern China. The syn-sedimentary boudinage structure was found in an earthquake slump block in the lower part of the Early Paleozoic Sailinhudong Group, 20 km to the southeast of Bayan Obo, Inner Mongolia, north of China. The slump block is composed of two kinds of very thin layers-pale-gray micrite (microcrystalline limestone) of 1-2 cm thick interbedded with gray muddy micrite layers with the similar thickness. Almost every thin muddy micrite layer was cut into imbricate blocks or boudins by abundant tiny contemporaneous faults, while the interbedded micrite remain in continuity. Boudins form as a response to layer-parallel extension (and/or layer-perpendicular flattening) of stiff layers enveloped top and bottom by mechanically soft layers. In this case, the imbricate blocks cut by the tiny contemporaneous faults are the result of abrupt horizontal extension of the crust in the SE-NW direction accompanied with earthquakes. Thus, the rock block is, in fact, a kind of seismites. The syn-sedimentary boudins indicate that there was at least a strong earthquake belt on the southeast side of the basin during the early stage of the Sailinhudong Group. This may be a good constraint on the tectonic evolution of the Bayan Obo area during the Early Paleozoic time. The syn-sedimentary compression structure was found in the Middle Triassic flysch in the Nanpanjiang Basin. The typical structures are compression sand pillows and compression wrinkles. Both of them were found on the bottoms of sand units and the top surface of the underlying mud units. In other words, the structures were found only in the interfaces between the graded sand layer and the underlying mud layer of the flysch. A deformation experiment with dough was conducted, showing that the tectonic deformation must have been instantaneous one accompanied by earthquakes. The compression sand pillows or wrinkles showed uniform directions along the bottoms of the sand layer in the flysch, revealing contemporaneous horizontal compression during the time between deposition and diagenesis of the related beds. The Nanpanjiang Basin was affected, in general, with SSW-NNE compression during the Middle Triassic, according to the syn-sedimentary compression structure. The two kinds of syn-sedimentary tectonic deformation also indicate that the related basins belong to a rift basin and a remnant basin, respectively, in the model of Wilson Cycle.
文摘The Yangtze plate, extending from east to west in southern China, was formed about 800 Ma ago. Since the Sinian, two aulacogens trending east-northeast and connected at the east ends, have been initiated in the Jiangsu-Zhejiang-Anhui region on the east margin of the plate with a sedimentary sequence up to 10,000 m in thickness. At a later stage of sedimentologic evolution, flysch and molasse were produced. The flyseh was accumulated in the Late Ordovician, when the two aulacogens became bays that opened to the east; the elastic materials were derived from the Yangtze oldland on the northern and southern sides of the basins. The molasse was accumulated from the terminal Late Ordovician to the Middle Ordovician; the clastie materials came from an uplifted orogenic belt in the east. This indicates that a major change in the tectonic pattern of the basins has taken place.
文摘Kekexili basin, located in Northern Qinghai—Xizang plateau, has an area of over 4000km\+2 and is the largest Paleogene land facies basin in the plateau. With NWW\|SEE trend, Kekexili basin extends along the north side of the Jinshajiang suture. Its sediments, Fenghuoshan group, formed in E 1—E 3, show a shape of wedge with big thickness in south and small thickness in north. There are four sedimentary facies; fan\|delta and alluvial facies that occur in south, lake and lake\|delta facies, which do in north, in this basin. The north\|dipping Jinshajiang normal faults on the south margin of the basin have controlled the developments of the basin. The S—N compression at the end of E3 strongly folded the basin strata and transformed Jinshajiang normal faults into thrusts. In N1, widespread denudation occurred in the whole plateau. During N 2—Q, Kekexili area uplifted along with the whole plateau, besides, the thrusts in the basin showed coherent activity. We propose a geodynamical model for explaining the basin development. In early E,India plate, due to its colliding Eurasia plate, stopped its ocean crust subduction northward, then the subducted ocean lithosphere breaking away made the south margin area, most possibly to the south of Jinshajiang suture, of Eurasia plate isostatically uplift, so the north\|dipping Jinshajiang suture acted as normal faults and controled the north basin development. In late E, the isostatic uplift finished, the basin also gradually terminated its development .At the end of E, Jinshajiang normal faults became thrusts and the basin strata were folded under the northward compression of India plate. In the N1, India plate started incontinental subduction, the lower crust and lower mantle lithosphere of Qinghai—Xizang area underwent more intensive compression and deformation than its upper crust, and the induced transversal expansion in the lower lithosphere uplifted the upper crust and decreased its horizontal stress, which conduced the upper crust undergo denudation. During N 2—Q, convective removal of the lower mantle lithosphere of Qinghai\|Xizang area led to rapid uplift of this area.
基金National Natural Science Foundation of China (49874010)
文摘It has been analyzed the influence of the tectonic ambient shear stress value on response spectrum based on the previous theory. Based on the prediction equation BJF94 presented by the famous American researchers, CLB20, a new prediction formula is proposed by us, where it is introduced the influence of tectonic ambient shear stress value on response spectrum. BJF94 is the prediction equation, which mainly depends on strong ground motion data from western USA, while the prediction equation SEA99 is based on the strong ground motion data from exten-sional region all over the world. Comparing these two prediction equations in detail, it is found that after BJF94′s prediction value lg(Y) minus 0.16 logarithmic units, the value is very close to SEA99′s one. This case demonstrates that lg(Y) in extensional region is smaller; the differences of prediction equation are mainly owe to the differences of tectonic ambient shear stress value. If the factor of tectonic ambient shear stress value is included into the pre-diction equation, and the magnitude is used seismic moment magnitude to express, which is universal used around the world, and the distance is used the distance of fault project, which commonly used by many people, then re-gional differences of prediction equation will become much less, even vanish, and it can be constructed the uni-versal prediction equation proper to all over the world. The error in the earthquake-resistant design in China will be small if we directly use the results of response spectrum of USA (e.g. BJF94 or SEA99).
基金The National Natural Science Foundation of China under contract Nos 42077410 and 41872112。
文摘Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration and development.Based on high-resolution 3D seismic data,the Miocene channel system in the deep-water Taranaki Basin,New Zealand,was analyzed by using seismic interpretation techniques such as interlayer attribute extraction and strata slicing.The channel system was divided into five composite channels(CC-I to CC-V)according to four secondary level channel boundaries,and sedimentary elements such as channels,slump deposits,inner levees,mass transport deposits,and hemipelagic drape deposits were identified in the channel system.The morphological characteristics of several composite channels exhibited stark variances,and the overall morphology of the composite channels changed from relatively straight to highly sinuous to relatively straight.The evolution of the composite channels involved a gradual and repeated process of erosion and filling,and the composite channels could be divided into three evolutionary stages:initial erosion-filling,later erosion-filling(multistage),and channel abandonment.The middle Miocene channel system may have formed as a consequence of combined regional tectonic activity and global climatic change,and its intricate morphological alterations may have been influenced by the channel's ability to self-regulate and gravity flow properties.When studying the sedimentary evolution of a large-scale deep-water channel system in the Taranaki Basin during the Oligocene-Miocene,which transitioned from a passive margin to plate convergence,it can be understood how tectonic activity affected the channel and can also provide a theoretical reference for the evolution of the deepwater channels in areas with similar tectonic conversion environments around the world.