期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stability control of surrounding rocks for a coal roadway in a deep tectonic region 被引量:16
1
作者 Xiao Tongqiang Wang Xiangyu Zhang Zhigao 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期171-176,共6页
In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With su... In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With such methods as numerical simulation and field testing, the distribution law of the displacement, stress and plastic zone in the surrounding rocks was analyzed. The deformation and failure mechanisms of coal roadways in deep tectonic areas were revealed: under high tectonic stress, two sides will slide along the roof or floor; while the plastic zone of the two sides will extend along the roof or floor,leading to more serious deformation and failure in the corner of two sides and the bolt supporting the corners is readily cut off by the shear force or tension force. Aimed at controlling the large slippage deformation of the two sides, serious deformation and failure in the corners of the two sides and massive bolt breakage, a ‘‘controlling and yielding coupling support'' control technology is proposed. Firstly, bolts which do not pass through the bedding plane should be used in the corners of the roadway, allowing the two sides to have some degree of sliding to achieve the purpose of ‘‘yielding'' support, and which avoid breakage of the bolts in the corner. After yielding support, bolts in the corner of the roadway and which pass through the bedding plane should be used to control the deformation and failure of the coal in the corner. ‘‘Controlling and yielding coupling support'' technology has been successfully applied in engineering practice, and the stability of deep coal roadway has been greatly improved. 展开更多
关键词 tectonic stress Coal roadway Bedding plane Controlling Yielding coupling support
下载PDF
Temporal-Spatial Structure of Intraplate Uplift in the Qinghai-Tibet Plateau 被引量:22
2
作者 LI Dewei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第1期105-134,共30页
The intraplate uplift of the Qinghai-Tibet Plateau took place on the basis of breakup and assembly of the Precambrian supercontinent, and southward ocean-continent transition of the Proto-, Paleo-, Meso- and Neo-Tethy... The intraplate uplift of the Qinghai-Tibet Plateau took place on the basis of breakup and assembly of the Precambrian supercontinent, and southward ocean-continent transition of the Proto-, Paleo-, Meso- and Neo-Tethys during the Caledonian, Indosinian, Yanshanian and Early Himalayan movements. The intraplate tectonic evolution of the Qinghai-Tibet Plateau underwent the early stage of intraplate orogeny characterized by migrational tectonic uplift, horizontal movement and geological processes during 180-7 Ma, and the late stage of isostatic mountain building characterized by pulsative rapid uplift, vertical movement and geographical processes since 3.6 Ma. The spatial-temporal evolution of the intraplate orogeny within the Qinghai-Tibet Plateau shows a regular transition from the northern part through the central part to the southern part during 180-120 Ma, 65-35 Ma, and 25-7 Ma respectively, with extensive intraplate faulting, folding, block movement, magmatism and metallogenesis. Simultaneous intraplate orogeny and basin formation resulted from crustal rheological stratification and basin-orogen coupling that was induced by lateral viscous flow in the lower crust. This continental dynamic process was controlled by lateral flow of hot and soft materials within the lower crust because of slab dehydration and melted mantle upwelling above the subducted plates during the southward Tethyan ocean-continent transition processes or asthenosphere diapirism. Intraplate orogeny and basin formation were irrelevant to plate collision. The Qinghai-Tibet Plateau as a whole was actually formed by the isostatic mountain building processes since 3.6 Ma that were characterized by crust-scale vertical movement, and integral rapid uplift of the plateau, accompanied by isostatic subsidence of peripheral basins and depressions, and great changes in topography and environment. A series of pulsative mountain building events, associated with gravity equilibrium and isostatic adjustment of crustal materials, at 3.6 Ma, 2.5 Ma, 1.8-1.2 Ma, 0.9-0.8 Ma and 0.15-0.12 Ma led to the formation of a composite orogenic belt by unifying the originally relatively independent Himalayas, Gangdise, Tanghla, Longmenshan, Kunlun, Altyn Tagh, and Qilian mountains, and the formation of the complete Qinghai-Tibet Plateau with a unified mountain root after Miocene uplift of the plateau as a whole. 展开更多
关键词 intraplate orogeny isostatic mountain building lower crust flow basin-orogen coupling tectonic evolution Qinghai-Tibet Plateau
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部