期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Discovery of the Early Devonian Sinistral Shear in the Jiangshan-Shaoxing Fault Zone and its Tectonic Significance 被引量:2
1
作者 WANG Zongxiu LI Chunlin +1 位作者 WANG Duixing GAO Wanli 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第4期1412-1413,共2页
The Jiangshan-Shaoxing fault zone (JSFZ) was formed by the amalgamation of the Yangtze and Cathaysia blocks in the Neoproterozoic.Since the Paleozoic,the JSFZ has experienced three episodes of tectonic activities:t... The Jiangshan-Shaoxing fault zone (JSFZ) was formed by the amalgamation of the Yangtze and Cathaysia blocks in the Neoproterozoic.Since the Paleozoic,the JSFZ has experienced three episodes of tectonic activities:the Early Paleozoic ductile strike-slip shear,Early Mesozoic thrust,and the Late Mesozoic extension. 展开更多
关键词 Discovery of the Early Devonian Sinistral Shear in the Jiangshan-Shaoxing fault Zone and its tectonic Significance
下载PDF
Geometric Structure and Tectonic Activities of Wanquan Fault,Hebei Province
2
作者 Zhou Jianglin You Huichuan +4 位作者 Zhou Yueling Shao Cuiru Yang Qiyan Li Jinjin Zhang Zhengyu 《Earthquake Research in China》 2013年第2期223-232,共10页
Based on detailed investigations and prospecting,this paper describes the geometrical characteristics and tectonic activities of Wanquan fault in northwest of Beijing. This fault strikes mainly northeast or northeast ... Based on detailed investigations and prospecting,this paper describes the geometrical characteristics and tectonic activities of Wanquan fault in northwest of Beijing. This fault strikes mainly northeast or northeast to north,dipping southeast,and extends over a length of 15km. It is a major geological and geomorphological margin,controlling the neotectonic movement in this region. On the southeast side of Wanquan fault are the Late Quaternary unconsolidated deposits,forming a basin or deposition; but on the other side is Mesozoic volcano debris,forming lower-mountains and hills. Wanquan fault is a mid- to-high-angle normal fault dipping southeast. This fault was more active in the Quaternary. Since the middle-late part of the alate Pleistocene,the average rate with vertical slip of a single fault is over 0. 03 ~ 0. 3mm /a,but the fault has multiple slipping surfaces,and a total rate with vertical slip will be estimated. 展开更多
关键词 Wanquan fault Geometric structure tectonic activities
下载PDF
Main active faults and seismic activity along the Yangtze River Economic Belt:Based on remote sensing geological survey 被引量:7
3
作者 Zhong-hai Wu Chun-jing Zhou +2 位作者 Xiao-long Huang Gen-mo Zhao Cheng-xuan Tan 《China Geology》 2020年第2期314-338,共25页
The Yangtze River Economic Belt(YREB)spans three terrain steps in China and features diverse topography that is characterized by significant differences in geological structure and presentday crustal deformation.Activ... The Yangtze River Economic Belt(YREB)spans three terrain steps in China and features diverse topography that is characterized by significant differences in geological structure and presentday crustal deformation.Active faults and seismic activity are important geological factors for the planning and development of the YREB.In this paper,the spatial distribution and activity of 165 active faults that exist along the YREB have been compiled from previous findings,using both remote-sensing data and geological survey results.The crustal stability of seven particularly noteworthy typical active fault zones and their potential effects on the crustal stability of the urban agglomerations are analyzed.The main active fault zones in the western YREB,together with the neighboring regional active faults,make up an arc fault block region comprising primarily of Sichuan-Yunnan and a“Sichuan-Yunnan arc rotational-shear active tectonic system”strong deformation region that features rotation,shear and extensional deformation.The active faults in the central-eastern YREB,with seven NE-NNE and seven NW-NWW active faults(the“7-longitudinal,7-horizontal”pattern),macroscopically make up a“chessboard tectonic system”medium-weak deformation region in the geomechanical tectonic system.They are also the main geological constraints for the crustal stability of the YREB. 展开更多
关键词 Active faults and tectonic system Paleo-earthquake Regional crustal stability Seismic risk assessment Yangtze River China
下载PDF
Quaternary tectonic control on channel morphology over sedimentary low land:A case study in the Ajay-Damodar interfluve of Eastern India 被引量:3
4
作者 Suvendu Roy Abhay Sankar Sahu 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第6期927-946,共20页
The style of active tectonic on the deformation and characterization of fluvial landscape has been investigated on three typical skrike-slip fault zones of the Ajay-Damodar Interfluve(ADI) in Eastern India through f... The style of active tectonic on the deformation and characterization of fluvial landscape has been investigated on three typical skrike-slip fault zones of the Ajay-Damodar Interfluve(ADI) in Eastern India through field mapping,structural analysis and examination of digital topography(ASTER-30 m),multispectral imageries,and Google Earth images,Channel morphology in Quaternary sediment is more deformed than Cenozoic lateritic tract and igneous rock system by the neotectonic activities,The structural and lithological controls on the river system in ADI region are reflected by distinct drainage patterns,abrupt change in flow direction,offset river channels,straight river lines,ponded river channel,marshy lands,sag ponds,palaeo-channels,alluvial fans,meander cutoffs,multi-terrace river valley,incised compressed meander,convexity of channel bed slope and knick points in longitudinal profile,Seven morphotectonic indices have been used to infer the role of neotectonic on the modification of channel morphology,A tectonic index map for the ADI region has been prepared by the integration of used morphotectonic indices,which is also calibrated by Bouguer gravity anomaly data and field investigation. 展开更多
关键词 Active tectonic Skrike-slip fault Channel morphology Morphotectonic indices Neotectonic map
下载PDF
Tectonic Mechanism of the Suining(Ms5.0) Earthquake,Center of Sichuan Basin,China 被引量:1
5
作者 ZHOU Rong-jun LI Yong +11 位作者 Laurence SVIRCHEV ZHANG Yong-jiu HE Deng-fa HE Yu-lin ZHAO Pei-lin WANG Zan-jun LONG Feng SU Jin-rong WANG Shi-yuan LIANG Ming-jian LIU Yu-fa KANG Chuan-chuan 《Journal of Mountain Science》 SCIE CSCD 2013年第1期84-94,共11页
On Jan.31 of 2010,the Suining earthquake occurred at Suining City whch is located the center of Sichuan Basin.It is unusual for the strong earthquake to occur at the center of Sichuan Basin with a stable geotectonic e... On Jan.31 of 2010,the Suining earthquake occurred at Suining City whch is located the center of Sichuan Basin.It is unusual for the strong earthquake to occur at the center of Sichuan Basin with a stable geotectonic environment and a low-level historical seismicity.The macro-epicenter of the earthquake is located at Moxi town of Suining city,Sichuan province,China.The earthquake intensity of the epicenter area is degree VII,and the long axis of the isoseismal line trends in NE orientation.The Suining earthquake caused the collapse or destruction of 460 family houses.The earthquake focal mechanism solution and records of the near-field seismographic stations showed the earthquake occurred at the reverse fault at a depth 34 km.Based on the waveform and focal mechanism,we consider the Suning earthquake is triggered by the reverse fault and not by the gravitational collapse or man-made explosive sources.Basing on seismic refraction profile and borehole,we consider that the earthquake is triggered by the backthrust fault of Moxi anticline rooted in detachments at a depth 3-4 km.Furthermore,we infer that tectonic mechanism of the Suining(Ms5.0) Earthquake is driven by the horizontal crustal shortening and stress adjustment on a shallow detachment after the Wenchuan(Ms 8.0) earthquake. 展开更多
关键词 Suining(Ms5.0) earthquake Disaster tectonic mechanism Horizontal crustal shortening Backthrust fault Shallow detachment Sichuan Basin
下载PDF
Tectonic Background of the Yutian M_S7.3 Earthquake in 2014 and Its Relationship with the Yutian M_S7.3 Earthquake in 2008
6
作者 Cheng Jia Liu Jie +2 位作者 Sheng Shuzhong Yao Qi Liu Daiqin 《Earthquake Research in China》 CSCD 2015年第1期30-37,共8页
The regional tectonic background and characteristics of active faults of the Yutian MS7.3earthquake on February 12,2014 are discussed in this paper.After the analysis of the epicenter area of the MS7.3 earthquake in 2... The regional tectonic background and characteristics of active faults of the Yutian MS7.3earthquake on February 12,2014 are discussed in this paper.After the analysis of the epicenter area of the MS7.3 earthquake in 2014 and the focal mechanisms of the former strong earthquakes around it,the authors deduced that the seismogenic fault of the MS7.3earthquake is the east branch of the Ashikule fault.The MS7.3 earthquake in 2014 and the MS7.3 earthquake in 2008 are two strong earthquake events on the different sections of the Altun Tagh fault,where the fault behavior changes from sinistral slip to normal faulting because of the extensional tail effects in the southern end of the Altun Tagh fault.It is concluded that the two MS7.3 earthquakes have the same dynamic source,and the MS7.3earthquake in 2008 promoted the occurrence of the MS7.3 earthquake in 2014.Finally,we calculate the Coulomb stress change to the seismogenic fault of the MS7.3 earthquake in2014 from the MS7.3 earthquake in 2008 using the layered crust model.The result also shows that the MS7.3 earthquake in 2008 accelerated the occurrence of the MS7.3earthquake in 2014. 展开更多
关键词 The Yutian Ms7. 3 earthquake on February 12 2014 tectonic backgroundSeismogenic fault The Yutian Ms7. 3 earthquake in 2008
下载PDF
Anomalously deep earthquakes related to the Ojo de Agua Lineament and its tectonic significance,Sierras Pampeanas of Córdoba,Central Argentina
7
作者 Ana Caro Montero Roberto D.Martino Alina B.Guereschi 《Geodesy and Geodynamics》 2018年第1期77-92,共16页
The Sierras de Cordoba are the easternmost uplifted ranges of the Sierras Pampeanas geological province of Argentina. They are composed of a Neoproterozoic-Paleozoic basement arranged in north-south aligned mountain r... The Sierras de Cordoba are the easternmost uplifted ranges of the Sierras Pampeanas geological province of Argentina. They are composed of a Neoproterozoic-Paleozoic basement arranged in north-south aligned mountain ranges, limited by west-vergent reverse faults, reactivated or formed by compressive tectonics during the Andean orogeny. The ranges are also affected by oblique subvertical lineaments,probably related to pan-Gondwanan structures. The recorded seismicity shows anomalously deep earthquakes(up to 80 km depth) concentrated in the northwestern area. We attribute this seismicity to the current tectonic activity of the Ojo de Agua Lineament. This lineament is a N13°-135° strike, 70°-80° NE dip,macrostructure with more than 80 km depth and 160 km length. A sinistral transcompressional kinematics(convergent oblique shear) is deduced by the focal mechanism of a deep earthquake, together with hydrological and geomorphological features strongly modified. The continental lithosphere under the Sierras de Cordoba would be colder and more rigid than in a normal subduction area, due to the retraction of the asthenospheric wedge to the foreland, causing seismicity to depths greater than 40 km, below the Mohorovicic discontinuity. Neogene volcanism would be closely related to this lineament, allowing the rapid ascent of melts from the mantle. 展开更多
关键词 Brittle tectonics faulting Seismotectonics Deep earthquakes Andean foreland
下载PDF
Activity of the Lenglongling fault system and seismotectonics of the 2016 MS6.4 Menyuan earthquake 被引量:20
8
作者 GUO Peng HAN ZhuJun +3 位作者 AN YanFen JIANG WenLiang MAO ZeBin FENG Wei 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第5期929-942,共14页
The MS6.4 Menyuan earthquake occurred on the northern side of the Lenglongling fault(LLLF) in the mid-western of the Qilian-Haiyuan fault zone on January 21, 2016. The earthquake epicenter was distant from the Minle-D... The MS6.4 Menyuan earthquake occurred on the northern side of the Lenglongling fault(LLLF) in the mid-western of the Qilian-Haiyuan fault zone on January 21, 2016. The earthquake epicenter was distant from the Minle-Damaying and Huangcheng-Shuangta faults, eastern of the Northern Qilian Shan fault zone. A near northwest-striking rupture plane intersects the two faults at a certain angle. The focal mechanism solution shows that this was a thrust-type earthquake, slightly different from the strike-slip movement with a thrust component of the LLLF. Field geological mapping, tectonic geomorphology analysis, trench excavation and 14 C dating reveal that(1) the LLLF has been obviously active since the Holocene, and may behave with characteristic slip behavior and produce M_W7.3–7.5 earthquakes;(2) the LLLF appears as a flower structure in terms of structure style, and dips NNE at a steep angle; and(3) the most recent earthquake event occurred after 1815–1065 a BP. An associated fault, the Northern Lenglongling fault(NLLLF), is located at the northwestern end of the LLLF. Consequently, the NLLLF was continually subject to tectonic pushing effects from the left-lateral shear at the end of the LLLF, and, accordingly, it bent and rotated outward tectonically.Subsequently, the fault deviated from the dominant rupture azimuth and activity weakened. In the late Quaternary, it behaved as a thrust fault with no obvious deformation at the surface. This is indicated by the arc shape, with a micro-protrusion northeastward,and no geologic or geomorphic signs of surface rupturing since the late Quaternary. However, such faults could still rupture at depth, producing moderate-strong earthquakes. The geometric and kinematic properties of the NLLLF are in good agreement with the occurrence and kinematic properties of nodal plane 2, and with the distribution characteristics of the aftershocks and seismic intensity. Therefore, the NLLLF is a more suitable seismogenic structure for the MS 6.4 Menyuan earthquake. In addition, the thrust movement of the NLLLF accommodates subsequent movement of the LLLF. During the historical evolution of the NLLLF,the LLLF and the NLLLF have affected the local topography through tectonic uplift. 展开更多
关键词 MS6 4 Mengyuan earthquake Seismogenic structure tectonic environment Lenglongling fault Northern Lenglongling fault
原文传递
Dextral strike-slip of Sanguankou-Niushoushan fault zone and extension of arc tectonic belt in the northeastern margin of the Tibet Plateau 被引量:19
9
作者 LEI QiYun ZHANG PeiZhen +4 位作者 ZHENG WenJun CHAI ChiZhang WANG WeiTao DU Peng YU JingXing 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第5期1025-1040,共16页
The kinematic characteristics of the Sanguankou-Niushoushan fault(SGK-NSSF) are of great significance to the understanding of the extension of the arc tectonic belt in the northeastern margin of the Tibet Plateau. U... The kinematic characteristics of the Sanguankou-Niushoushan fault(SGK-NSSF) are of great significance to the understanding of the extension of the arc tectonic belt in the northeastern margin of the Tibet Plateau. Using field surveys and various data collection methods, including large-scale geological mapping, measurement of typical topographies, and dating of sedimentary strata, it was determined that the SGK-NSSF exhibits obvious dextral strike-slip characteristics and thus is not a sinistral strike-slip fault, as believed by previous researchers. The results of this study show that the geological boundaries for the Paleozoic, Mesozoic, and Cenozoic eras were all dextrally dislocated by the fault, with the faulted displacements being similar. The maximum strike-slip displacement of the fault, after elimination of topographic effects, was found to be 961±6 m. The Sanguankou fault at the northern section exhibits obvious characteristics of more recent activities, with a series of small gullies having undergone synchronized dextral writhing after traversing the fault. The average horizontal slip rate of the fault since the late Quaternary was determined to be approximately 0.35 mm/a. The pre-existing fold structures formed during the late Pliocene were dislocated by the fault and became ex situ, indicating that dextral strike-slip of the fault could not have occurred prior to the late Pliocene. The maximum displacements and average slip rates were used to estimate the onset time of the dextral strike-slip activities of the fault as being after 2.7 Ma. In this study, the understanding of previous researchers concerning the extension in the northeastern margin of the Tibet Plateau was combined with analyses of the successive relationships between fold deformations and fault activities. This led to the finding that the extension in the northeastern margin of the Tibet Plateau reached the vicinity of the SGK-NSSF during the late Pliocene(~2.7 Ma), causing regional uplift and fold deformations of the strata there. During the early Quaternary, the northeastern compression of the Tibet Plateau and the counterclockwise rotation of the Ordos block collectively resulted in the dextral strike-slip activities of the SGK-NSSF. This then formed the foremost margin of the arc tectonic belt extension in the northeastern margin of the Tibet Plateau. 展开更多
关键词 Northeastern margin of Tibet Plateau Sanguankou-Niushoushan fault Dextral strike-slip tectonic interactions between blocks Arc tectonic belt
原文传递
Study of main body element of crustal strain and its relationship with moderate-strong earthquakes
10
作者 陈兵 张晓亮 +3 位作者 王庆良 刘文义 王敏 薄万举 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第1期54-61,共8页
In this paper, progress in strain study of blocks and faults by GPS data are discussed, and the concept that active structures between blocks are the main body of crustal strain is clarified. By energy transfer princi... In this paper, progress in strain study of blocks and faults by GPS data are discussed, and the concept that active structures between blocks are the main body of crustal strain is clarified. By energy transfer principle of elastic mechanics, the relation between strain around faults and tectonic force on fault surfaces is set up and main body element model of crustal strain is constructed. Finally, the relation between mechanical evolution of model and seismogenic process of Kunlun earthquake (Ms=8.1) is discussed by continuous GPS data of datum stations. The result suggests that the relatively relaxed change under background of strong compressing and shearing may help to trigger moderate-strong earthquakes. 展开更多
关键词 main body element of crustal strain tectonic force on fault surface energy transfer GPS benchmark site postseismic relative relaxation
下载PDF
Analysis of Nappes and Glided Nappes in China
11
作者 Yang Kesheng(Bureau of oil Geophysical Prospecting) 《China Oil & Gas》 CAS 1996年第2期78-80,共3页
AnalysisofNappesandGlidedNappesinChina¥YangKesheng(BureauofoilGeophysicalProspecting)Keywords:Nappe.Structur... AnalysisofNappesandGlidedNappesinChina¥YangKesheng(BureauofoilGeophysicalProspecting)Keywords:Nappe.Structure.Thrustfault.Tec... 展开更多
关键词 Nappe.Structure.Thrust fault.tectonic MOVEMENT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部