The Nanling region is an important nonferrous and rare metal metallogenic province in South China, in which most of the deposits are related to granitoids in genesis. It covers southern Hunan, southern Jiangxi, Guangx...The Nanling region is an important nonferrous and rare metal metallogenic province in South China, in which most of the deposits are related to granitoids in genesis. It covers southern Hunan, southern Jiangxi, Guangxi, Guangdong and Fujian provinces, with a total area of about 550,000 km2. This metallogenic province is well known in the world for its rich tungsten and tin resources. In the past 40-odd years, a vast amount of mineral exploration activities and studies of the geology of mineral deposits have been carried out and great achievements obtained in the province. This paper is focused on a discussion about the deep tectonic processes in the orogenic belt during the Mesozoic and their contribution to the superaccumulation of metals. Tectonically, this metallogenic province is composed of three units: (1) the marginal continental orogenic belt in the Southeastern Coast fold system in the Yanshanian; (2) the intercontinental orogenic belt in the collision suture belt between the Yangtze and Cathay-sian plates mainly in the Caledonian; and (3) the intracontinental orogenic belt induced by subduction of the ocean crust and delimination of the mantle lithosphere in the Yanshanian. It is suggested that superaccumulation of metals in this metallogenic province was caused by the existence of mantle rooted tectonics at the depth based on comprehensive studies of geophysical information of seismic, geothermal and magnetotelluric surveys in Nanling and its adjacent areas. The Xihuashan wolframite quartz vein deposit, the Shizhuyuan W, Sn, Mo, Bi greisen-skarn deposit and the Dachang tin-polymetallic deposit are three typical examples of the deep tectonic processes. However, this kind of deep tectonic processes only act as the 'engine' of the superaccumulation of metals, which means that they should have to correspond with the super-crust ore-controlling pattern of 'lines-rows-clusters' (L-R-C). This recog-nization is expected to play an important role in assessment of mineral resources in this province.展开更多
1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simul...1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simulate salt展开更多
Eclogitic garnet-amphibole rocks are scattered around me Songshugou ultramafic bodies in Qinling Mountains . Three metamorphic stages are recognized in terms of petrography, mineral chemistry and geothermobarometry . ...Eclogitic garnet-amphibole rocks are scattered around me Songshugou ultramafic bodies in Qinling Mountains . Three metamorphic stages are recognized in terms of petrography, mineral chemistry and geothermobarometry . The first alhite-amphibole stage was of greenschist facies metamorphism with typical mineral assemblage of actinolite+epidote+chlorite+albite ; the pressure and temperature conditions were equal to or lower than 500MPa and about 400 ℃ .The second prograde eclogitic garnet-amphibole stage was of amphibole-eclogite fades metamorphism with typical mineral assemblage of garnet+hornblende± clinopyroxene+ruffle without ptagioclase ,the pressure condition was at least 1000- 1200MPa and the temperature about 600 ℃ .The third retrograde epidote-amphibole stage was of epidote-amphibolite fecies with assemblage of plagioclase+hornblende+epidote+ilmenite/titanite , the temperature was 500-600 ℃ and the pressure from 800MPa down to 500MPa .All three stages took place in one single tectonothermal event called Jinningian movement at about 1000Ma .The p-T path shows a hairpin shape and thus indicates a metamorphism in the sobduction environment. The metamorphk processes of the garnet- amphibole rocks thus provides a significant evidence for the pbte tectonic movement prevailing in the late Middle Proterozoic period.展开更多
The diverging plate boundaries in North Iceland and its shelf display a complex tectonic at the Kolbeinsey Ridge (K-R), the Northern Rift Zone (NRZ), and the Tj?rnes Fracture Zone containing the Grímsey Oblique R...The diverging plate boundaries in North Iceland and its shelf display a complex tectonic at the Kolbeinsey Ridge (K-R), the Northern Rift Zone (NRZ), and the Tj?rnes Fracture Zone containing the Grímsey Oblique Rift (GOR), the Húsavík-Flatey Fault (HFF), and the Dalvík Lineament (DL). While active deformation is well-known, the structural pattern is sporadically mapped and a comprehensive account of the upper Tertiary-present deformation is not fully at hand. To address the gaps, this paper provides new regional tectonic maps with continuous coverage, and detailed analyses of the deformation. Faults, open fractures, prominent joints and volcanic edifices were identified on Multibeam/Single beam, Spot 5, and Digital Elevation Model, and subjected to multidisciplinary structural analysis and correlation with selected data. Some of the results are: 1) Six sets constitute the structural pattern. The N-S rift-parallel normal faults are 1/3, and the shear fractures of the transform zone and the oblique rift 2/3 of the fracture population. The en échelon arrangements above deep-seated shear zones indicate dextral slip on WNW to NW, and sinistral slip on NNE to ENE faults, conformable with earthquake data. 2) During the polyphase tectonic, the six sets led to basin and horst formation, block compartmentalisation, rotation, horsetail splay, rhomb-graben in relay zone of strike-slips, and volcanism. 3) Listric faults are absent and the steeply-dipping faults are antithetic, synthetic, or form extensional flower structures above 4 km depth. The Plio-pleistocene/present syn-sedimentary deformation caused a deep half graben in the Eyjafjarearáll Basin (Ey), fault growth, rollover, and sediment onlaps, with some of the faults still active. 4) The plate boundaries of K-R/Ey, GOR/?xarfjreur/NRZ, and DL delimit a major microplate labelled here as Grímsey-Tj?rnes-Dalvík. 5) The WNW earthquake cluster in GOR corresponds either to a blind horsetail splay fault or to initiation of a transform segment parallel to the HFF. The described tectonic-sedimentary-magmatic deformation is relevant to other diverging plate boundaries where similar sets control the hydrocarbon and geothermal resources.展开更多
Where the Yellow River flows through the Haiyuan-Tongxin arc-form tectonic region on the northeastern side of the Qinghai-Xizang (Tibet) Plateau, as many as 10~21 basis and erosion terraces have been produced, among ...Where the Yellow River flows through the Haiyuan-Tongxin arc-form tectonic region on the northeastern side of the Qinghai-Xizang (Tibet) Plateau, as many as 10~21 basis and erosion terraces have been produced, among which the biggest altitude above river level is 401m and the formation age of the highest terrace is 1.57 Ma B.P. Based on comparative analysis of the Yellow River terraces located separately in the Mijiashan mountain, the Chemuxia gorge, the Heishanxia gorge and the other river terraces in the vast extent of the northern part of China, it has been found that the tectonic processes resulting in the formation of the terrace series is one of multi-gradational features, i.e., a terrace series can include the various terraces produced by tectonic uplifts of different scopes or scales and different ranks. The Yellow River terrace series in the study region can be divided into three grades. Among them, in the first grade there are 6 terraces which were formed separately at the same time in the vast extent of the northern part of China and represent the number and magnitude of uplift of the Qinghai-Xizang Plateau since 1.6 Ma B. P.; in the second grade there are 5 terraces which were separately and simultaneously developed within the Haiyuan-Tianjingshan tectonic region and represent the number and magnitude of uplift of this tectonic region itself since 1.6Ma B.P.; in the third grade there are 10 terraces which developed on the eastern slope of the Mijiashan mountain and represent the number and amplitude of uplift of the Haiyuan tectonic belt itself since 1.6Ma B.P. Comparison of the terrace ages with loess-paleosoil sequence has also showed that the first grade terraces reflecting the vast scope uplifts of the Qinghai-Xizang Plateau are very comparable with climatic changes and their formation ages all correspond to the interglacial epochs during which paleosoils were formed. This implies that the vast extent tectonic uplifts resulting in river down-cutting are closely related to the warm-humid climatic periods which can also result in river downward erosion after strong dry and cold climatic periods, and they have jointly formed the tectonic-climatic cycles. There exists no unanimous and specific relationship between the formation ages of the second and third grade terraces and climatic changes and it is shown that the formation of those terraces was most mainly controlled by tectonic uplifts of the Tianjingshan block and the Haiyuan belt. The river terraces in the study region, therefore, may belong to 2 kinds of formation cause. One is a tectonic-climatic cyclical terrace produced jointly by vast extent tectonic uplifts and climatic changes, and the terraces of this kind are extensively distributed and can be well compared with each other among regions. Another is a pulse-tectonic cyclical terrace produced by local tectonic uplifts as dominant elements, and their distribution is restricted within an active belt and can not be compared with among regions.展开更多
文摘The Nanling region is an important nonferrous and rare metal metallogenic province in South China, in which most of the deposits are related to granitoids in genesis. It covers southern Hunan, southern Jiangxi, Guangxi, Guangdong and Fujian provinces, with a total area of about 550,000 km2. This metallogenic province is well known in the world for its rich tungsten and tin resources. In the past 40-odd years, a vast amount of mineral exploration activities and studies of the geology of mineral deposits have been carried out and great achievements obtained in the province. This paper is focused on a discussion about the deep tectonic processes in the orogenic belt during the Mesozoic and their contribution to the superaccumulation of metals. Tectonically, this metallogenic province is composed of three units: (1) the marginal continental orogenic belt in the Southeastern Coast fold system in the Yanshanian; (2) the intercontinental orogenic belt in the collision suture belt between the Yangtze and Cathay-sian plates mainly in the Caledonian; and (3) the intracontinental orogenic belt induced by subduction of the ocean crust and delimination of the mantle lithosphere in the Yanshanian. It is suggested that superaccumulation of metals in this metallogenic province was caused by the existence of mantle rooted tectonics at the depth based on comprehensive studies of geophysical information of seismic, geothermal and magnetotelluric surveys in Nanling and its adjacent areas. The Xihuashan wolframite quartz vein deposit, the Shizhuyuan W, Sn, Mo, Bi greisen-skarn deposit and the Dachang tin-polymetallic deposit are three typical examples of the deep tectonic processes. However, this kind of deep tectonic processes only act as the 'engine' of the superaccumulation of metals, which means that they should have to correspond with the super-crust ore-controlling pattern of 'lines-rows-clusters' (L-R-C). This recog-nization is expected to play an important role in assessment of mineral resources in this province.
基金supported by China Geological Survey Bureau potash resources investigation and evaluation project (1212011085524)NSFC projects (40872134, 41272227 )
文摘1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simulate salt
基金The project is supported by National Nature Science Fountation of China No.48900015
文摘Eclogitic garnet-amphibole rocks are scattered around me Songshugou ultramafic bodies in Qinling Mountains . Three metamorphic stages are recognized in terms of petrography, mineral chemistry and geothermobarometry . The first alhite-amphibole stage was of greenschist facies metamorphism with typical mineral assemblage of actinolite+epidote+chlorite+albite ; the pressure and temperature conditions were equal to or lower than 500MPa and about 400 ℃ .The second prograde eclogitic garnet-amphibole stage was of amphibole-eclogite fades metamorphism with typical mineral assemblage of garnet+hornblende± clinopyroxene+ruffle without ptagioclase ,the pressure condition was at least 1000- 1200MPa and the temperature about 600 ℃ .The third retrograde epidote-amphibole stage was of epidote-amphibolite fecies with assemblage of plagioclase+hornblende+epidote+ilmenite/titanite , the temperature was 500-600 ℃ and the pressure from 800MPa down to 500MPa .All three stages took place in one single tectonothermal event called Jinningian movement at about 1000Ma .The p-T path shows a hairpin shape and thus indicates a metamorphism in the sobduction environment. The metamorphk processes of the garnet- amphibole rocks thus provides a significant evidence for the pbte tectonic movement prevailing in the late Middle Proterozoic period.
文摘The diverging plate boundaries in North Iceland and its shelf display a complex tectonic at the Kolbeinsey Ridge (K-R), the Northern Rift Zone (NRZ), and the Tj?rnes Fracture Zone containing the Grímsey Oblique Rift (GOR), the Húsavík-Flatey Fault (HFF), and the Dalvík Lineament (DL). While active deformation is well-known, the structural pattern is sporadically mapped and a comprehensive account of the upper Tertiary-present deformation is not fully at hand. To address the gaps, this paper provides new regional tectonic maps with continuous coverage, and detailed analyses of the deformation. Faults, open fractures, prominent joints and volcanic edifices were identified on Multibeam/Single beam, Spot 5, and Digital Elevation Model, and subjected to multidisciplinary structural analysis and correlation with selected data. Some of the results are: 1) Six sets constitute the structural pattern. The N-S rift-parallel normal faults are 1/3, and the shear fractures of the transform zone and the oblique rift 2/3 of the fracture population. The en échelon arrangements above deep-seated shear zones indicate dextral slip on WNW to NW, and sinistral slip on NNE to ENE faults, conformable with earthquake data. 2) During the polyphase tectonic, the six sets led to basin and horst formation, block compartmentalisation, rotation, horsetail splay, rhomb-graben in relay zone of strike-slips, and volcanism. 3) Listric faults are absent and the steeply-dipping faults are antithetic, synthetic, or form extensional flower structures above 4 km depth. The Plio-pleistocene/present syn-sedimentary deformation caused a deep half graben in the Eyjafjarearáll Basin (Ey), fault growth, rollover, and sediment onlaps, with some of the faults still active. 4) The plate boundaries of K-R/Ey, GOR/?xarfjreur/NRZ, and DL delimit a major microplate labelled here as Grímsey-Tj?rnes-Dalvík. 5) The WNW earthquake cluster in GOR corresponds either to a blind horsetail splay fault or to initiation of a transform segment parallel to the HFF. The described tectonic-sedimentary-magmatic deformation is relevant to other diverging plate boundaries where similar sets control the hydrocarbon and geothermal resources.
文摘Where the Yellow River flows through the Haiyuan-Tongxin arc-form tectonic region on the northeastern side of the Qinghai-Xizang (Tibet) Plateau, as many as 10~21 basis and erosion terraces have been produced, among which the biggest altitude above river level is 401m and the formation age of the highest terrace is 1.57 Ma B.P. Based on comparative analysis of the Yellow River terraces located separately in the Mijiashan mountain, the Chemuxia gorge, the Heishanxia gorge and the other river terraces in the vast extent of the northern part of China, it has been found that the tectonic processes resulting in the formation of the terrace series is one of multi-gradational features, i.e., a terrace series can include the various terraces produced by tectonic uplifts of different scopes or scales and different ranks. The Yellow River terrace series in the study region can be divided into three grades. Among them, in the first grade there are 6 terraces which were formed separately at the same time in the vast extent of the northern part of China and represent the number and magnitude of uplift of the Qinghai-Xizang Plateau since 1.6 Ma B. P.; in the second grade there are 5 terraces which were separately and simultaneously developed within the Haiyuan-Tianjingshan tectonic region and represent the number and magnitude of uplift of this tectonic region itself since 1.6Ma B.P.; in the third grade there are 10 terraces which developed on the eastern slope of the Mijiashan mountain and represent the number and amplitude of uplift of the Haiyuan tectonic belt itself since 1.6Ma B.P. Comparison of the terrace ages with loess-paleosoil sequence has also showed that the first grade terraces reflecting the vast scope uplifts of the Qinghai-Xizang Plateau are very comparable with climatic changes and their formation ages all correspond to the interglacial epochs during which paleosoils were formed. This implies that the vast extent tectonic uplifts resulting in river down-cutting are closely related to the warm-humid climatic periods which can also result in river downward erosion after strong dry and cold climatic periods, and they have jointly formed the tectonic-climatic cycles. There exists no unanimous and specific relationship between the formation ages of the second and third grade terraces and climatic changes and it is shown that the formation of those terraces was most mainly controlled by tectonic uplifts of the Tianjingshan block and the Haiyuan belt. The river terraces in the study region, therefore, may belong to 2 kinds of formation cause. One is a tectonic-climatic cyclical terrace produced jointly by vast extent tectonic uplifts and climatic changes, and the terraces of this kind are extensively distributed and can be well compared with each other among regions. Another is a pulse-tectonic cyclical terrace produced by local tectonic uplifts as dominant elements, and their distribution is restricted within an active belt and can not be compared with among regions.