期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Cenozoic Tectonic Evolution of the Arcuate Structures in the Northeast Tibetan Plateau 被引量:6
1
作者 SHI Wei HU Jianmin +2 位作者 CHEN Hong LIU Yuan CHEN Peng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第2期676-677,共2页
The northeast Tibetan plateau contains important inlbrmation on the northeastward growth of the Tibetan plateau. It is bounded by the Ordos Block to the east, the Alxa Block to the north, and the Tibetan Plateau to th... The northeast Tibetan plateau contains important inlbrmation on the northeastward growth of the Tibetan plateau. It is bounded by the Ordos Block to the east, the Alxa Block to the north, and the Tibetan Plateau to the south (inset in Fig. 1; Tapponnier et al., 2001), and has undergone complex intracontinental deformation during the Cenozoic. In this region, the northeast-convex arcuate structures developed northeastward, and are composed of a series of Cenozoic NW-SE-trending basin-and-range terrain, i.e., the Haiyuan-Xingrenbu basin, Tongxin basin and Hongsipu basin, the Yueliang Shan-Nanhua Shan- Huangjiawa Shan, Xiang Shan-Xiangjing Shan, Yantong Shan and Luo Shan-Niushou Shah, which is geometrically similar with the American basin-range tectonics. 展开更多
关键词 Cenozoic tectonic Evolution of the Arcuate structures in the Northeast Tibetan Plateau
下载PDF
The characteristics of geophysical field and tectonic evolutionin the Bransfield Strait
2
作者 姚伯初 王光宇 +1 位作者 陈邦彦 陈圣源 《Chinese Journal of Polar Science》 1995年第1期12-23,共12页
Having analysised the data collected by our survey ship'Ocean IV 'in the Bransfield Strait in 1991,we recognized that the geomorphology,gravity and magnetic anomalies trending NE direction along bandings. The ... Having analysised the data collected by our survey ship'Ocean IV 'in the Bransfield Strait in 1991,we recognized that the geomorphology,gravity and magnetic anomalies trending NE direction along bandings. The sediments in the Bransfield Strait can be subdivided into two sequences:the first rifting equence and the second rifting sequence.The basement was faulted into a half-graben in northwestern side of the Bransfield trough. Considering the crustal structure crossing the South Shetland Islands,the Bransfield Strait and the Antarctic Peninsula, we propse a two-phase rifting tectonic evolution model and a layered-shear model for the lithospheric deformation under the effects of extensional stress field. 展开更多
关键词 geophysical field crustal structure tectonic evolution layered-shearmodel
下载PDF
A review of mechanism and prevention technologies of coal bumps in China 被引量:5
3
作者 Yaodong Jiang Yixin Zhao +1 位作者 Hongwei Wang Jie Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第1期180-194,共15页
Coal bump refers to a sudden catastrophic failure of coal seam and usually can cause serious damages to underground mining facilities and staff. In this circumstance, this paper focuses on the recent achievements in t... Coal bump refers to a sudden catastrophic failure of coal seam and usually can cause serious damages to underground mining facilities and staff. In this circumstance, this paper focuses on the recent achievements in the mechanism and prevention techniques of coal bumps over the past five years in China.Based on theoretical analysis, laboratory experiment, numerical simulation and field test, the characteristics of coal bumps occurrence in China's coal mines were described, and the difference between coal bumps and rockbursts was also discussed. In addition, three categories of coal bumps induced by'material failure' were introduced, i.e. hard roof, floor strata and tectonic structures, in which the mechanism of coal bumps induced by geological structures was analyzed. This involves the bump liability and microstructure effects on bump-prone coal failure, the mechanism of coal bumps in response to fault reactivation, island face mining or hard roof failure. Next, the achievements in the monitoring and controlling methods of coal bumps were reviewed. These methods involve the incorporated prediction system of micro-seismicity and mining-induced pressure, the distributed micro-seismic monitoring system, energy absorption support system, bolts with constant resistance and large elongation,and the 'multi-stage' high-performance support. Finally, an optimal mining design is desirable for the purpose of coal bump mitigation. 展开更多
关键词 Coal bumps tectonic structure Coal pillar Monitoring system Coal bumps prevention technology
下载PDF
Geological Study of Dasht-e-Top Sedimentary Basin, Wardak Province, Afghanistan 被引量:2
4
作者 Hafizullah Rasouli Shekeb Shamal Mohammad Hasib Sarwari 《International Journal of Geosciences》 2021年第6期531-540,共10页
This study is conducted to investigate the occurrence of various geological features, and to study the geology and soil characteristics of the study area. To achieve the objective of this research collection</span&... This study is conducted to investigate the occurrence of various geological features, and to study the geology and soil characteristics of the study area. To achieve the objective of this research collection</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> different samples from different locations in study area were collected, analyzed in</span></span></span><span><span><span style="font-family:"color:red;"> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">laboratory, and the results are compared with each other. The main rock types found in the study area were metamorphic rock (Gneiss) and igneous rock (Granite), and the main soil types found were Loam, sandy and silty soils with different soil structures (e.g. crumbling, platy, single grain, granular and prismatic). Calcium carbonate, Iron oxides and different sizes of sediments were also seen in the soil profile, where the size of sediments w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> changing as it was course size sediments and gravels near the mountain range and as going far from the mountain it was changed to fine size sediments like sand, silt and clay. The river terraces present in the area co</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ver</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> different geological structures such as angular and erosional unconformities, thinning out of strata and potholes. The mountain range surrounded the study area contains different observable tectonic structures such as anticline, syncline, vines (dyke, sill and apophasis). Furthermore, different types of valleys also existed in this area. 展开更多
关键词 PETROGRAPHY Sediment Size Soil structure River Terraces tectonic structures GEOMORPHOLOGY Calcium Carbonate
下载PDF
Geology of Northern Sulaiman Foldbelt, Shirani and Waziristan Regions (South Punjab, Balochistan and Khyber Pakhtunkhwa): New Tomistominae (Miocene False Gharial) from Sakhi Sarwar Area of Dera Ghazi Khan (South Punjab), Pakistan 被引量:1
5
作者 Muhammad Sadiq Malkani Muhammad Ilyas +7 位作者 Riffat Yasin Asghar Abbas Khizar Samiullah Tehreem Raza Syed Sibt E. Hassan Rana Mehrooz Fazal Aqsa Noor Aeman Malik 《Open Journal of Geology》 2022年第6期521-564,共44页
Northern Koh Sulaiman foldbelt, Shirani, North and South Waziristan (South Punjab, Balochistan and Khyber Pakhtunkhwa) comprised mostly PermoTriassic to Recent sediments with subordinate igneous and metamorphic rocks.... Northern Koh Sulaiman foldbelt, Shirani, North and South Waziristan (South Punjab, Balochistan and Khyber Pakhtunkhwa) comprised mostly PermoTriassic to Recent sediments with subordinate igneous and metamorphic rocks. These sedimentary strata folded and faulted by geodynamic and tectonic forces occurred during Late Cretaceous to Recent revealed through anticlinal and synclinal foldings and active faultings. The Northern Koh Sulaiman foldbelt, Shirani, North and South Waziristan areas host many economic minerals like copper and chromite, construction stones, marble limestones, gypsum and cement resources, uranium and other radioactive mineral resources, low-quality iron, phosphate and muddy coal, high-quality gemstones, petroleum potential and excellent water resources and many other rocks and minerals. High-quality window and faden quartz crystals deposited in fractures and fissures as vugs and veins deposited by high-temperature hypothermal solution created by the tectonic compression process. The area has economic chromite and magnesite deposits. The Northern Koh Sulaiman foldbelt, Shirani, North and South Waziristan areas have large cement raw materials/resources (limestones, gypsum and shale/clays available mostly on same sites) which vitally need to install many cement industries in these areas because the ideal central location and now only one cement industry (Dera Ghazi Khan cement industry) is in operation. The Northern Koh Sulaiman foldbelt, Shirani, North and South Waziristan consists of excellent surface water resources which need the construction of smaller and medium-sized dams on different rud kohi/streams/rivers for the development of the area. Sakhi Sarwar area of Dera Ghazi Khan (South Punjab) yielded fossil of new Tomistominae (False Gharial) Gavialidae and further its surroundings recently yielded fossils of famous vertebrates like reptiles (dinosaurs, crocodiles, pterosaur and snake), birds and mammals, and tracks/trackways of Late Cretaceous archosaurs like Sauropaonia, Ornithopaonia and Pteropaonia. 展开更多
关键词 Stratigraphy tectonic structures Economic Minerals New False Gharial Northern Sulaiman Foldbelt Shirani North and South Waziristan Pakistan
下载PDF
Crustal structure of Gondwana-and Yangtze-typed blocks:An example by wide-angle seismic profile from Menglian to Malong in western Yunnan 被引量:30
6
作者 ZHANG Zhongjie1, BAI Zhiming1, WANG Chunyong2, TENG Jiwen1, Lü Qingtian3, LI Jiliang1, SUN Shanxue1 & WANG Xinzheng1 1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 2. Institute of Geophysics, Chinese Seismological Bureau, Beijing 100081, China 3. Institute of Deposition Resource, Chinese Academy of Geological Sciences, Beijing 100037, China 《Science China Earth Sciences》 SCIE EI CAS 2005年第11期1828-1836,共9页
The wide-angle seismic profile between Menglian and Malong crosses the Baoshan block (Gondwana-typed), and Simao and southwestern Yangtze blocks (Yangtze-typed). By in-terpreting the wide-angle seismic data, we obtain... The wide-angle seismic profile between Menglian and Malong crosses the Baoshan block (Gondwana-typed), and Simao and southwestern Yangtze blocks (Yangtze-typed). By in-terpreting the wide-angle seismic data, we obtained the seismic crust/upper mantle structure of P-wave velocities together with the seismic reflections of these three blocks, Changning- Menglian and Mojiang suture zones among the mentioned three blocks. Our interpreting results demonstrate that the P-wave crustal velocity of Simao block is slower than that of Baoshan and southwestern Yangtze block and the crustal thickness gradually thickens from the Baoshan block, Simao to southwestern Yangtze block. Crustal reflection patterns of these three blocks have dis-tinct differences too. For the Gondwana-typed blocks, seismic reflections in the upper crust are well developed while in middle-lower crust they are very weak. The crustal reflections in the Yangtze block are very well developed. The crustal reflection patterns in Simao and southwest-ern Yangtze blocks are distinguishable. The average thickness of the crust in the studied area is about 40 km. And we make some discussions on the crustal thickening model of the three blocks in western Yunnan and tectonic setting of seismic developing and interaction of Gondwana and Yangtze blocks. 展开更多
关键词 GONDWANA blocks Yangtze blocks wide-angle profile crustal structure tectonic setting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部