The Lop Nur Salt Lake, located in the eastern part of the Tarim Basin, Xinjiang, China, has become a playa in the Quaternary. Rhombic in shape, the Lop Nur depression is mainly controlled by the NE-striking and nearly...The Lop Nur Salt Lake, located in the eastern part of the Tarim Basin, Xinjiang, China, has become a playa in the Quaternary. Rhombic in shape, the Lop Nur depression is mainly controlled by the NE-striking and nearly N-S-striking sets of faults. Since 1995, a superlarge brine potash deposit with potash resources of 2.50×10^8s t has been found in the Luobei subbasin in the northeastern part of the Lop Nur. We intensively studied the features and formation mechanism of faults inside the Lop Nur through satellite images, geomorphologic survey and continuous conductivity imaging and found seven subparallel graben faults formed under the action of nearly N 10° E principal compressional stress during deposition of the Lop Nur Salt Lake. These faults are up to 〉60 km long and 1-4 km wide and may extend downward for 1000 m or more. It is just under the action of these tensional faults that potash subbasius formed. The largest subbasin is the Luobei subbasin and the smaller ones are the Luoxi hollow, Erbei hollow and Tienan hollow. Investigation also indicates that the graben faults in the Lop Nur not only control the origin of the potash subbasins, but they themselves are also good brine reservoir structures, in which abundant potash-rich brines are stored. Therefore, The faults had played an important role in the potash formation of the Lop Nur.展开更多
Potash deposits commonly accumulate in highly restricted settings at the final stage of brine evaporation. This does not mean that potash deposits are formed simply as a result of the evaporation concentration of seaw...Potash deposits commonly accumulate in highly restricted settings at the final stage of brine evaporation. This does not mean that potash deposits are formed simply as a result of the evaporation concentration of seawater or lake water, but rather as a coupling result of particular provenance, tectonics and climate activities. In this paper, we focus on the formative mechanism of the potash deposits of Lop Nur depression in Tarim Basin to interpret the detailed coupling mechanism among provenance, tectonics and climate. In terms of the provenance of Lop Nur Lake, the water of the Tarim River which displays "potassium-rich" characteristics play an important role. In addition, the Pliocene and Lower-Middle Pleistocene clastic beds surrounding Lop Nur Lake host a certain amount of soluble potassium and thus serves as "source beds" for potash formation. During the late Pliocene, the Lop Nur region has declined and evolved into a great lake from the previous piedmont and diluvial fan area. Since the mid Pleistocene, the great-united Lop Nur Lake has been separated and has generated a chain system consisting of Taitema Lake, Big Ear Lake and Luobei Lake which has turned into the deepest sag in Lop Nur Lake. Dry climate in Lop Nur region has increased since the Pliocene, and became extreme at the late Pleistocene. The study implies that potash formation in Lop Nur Lake depends on the optimal combination of extreme components of provenance, tectonics and climate during a shorter-term period. The optimal patterns of three factors are generally characterized by the long-term accumulation and preliminary enrichment of potassium, the occurrence of the deepest sub-depression and the appearance of an extremely arid climate in Lop Nur region. These factors have been interacting synergistically since the forming of the saline lake and in the later stages strong "vapor extraction" caused by extremely arid climate is needed to trigger large scale mineralization of potash deposits.展开更多
Objective The Simao Basin in Yunnan Province has developed Cretaceous evaporite-bearing clastic deposits, including the Mangang and Mengyejing Formations which were originally interpreted as fluvial and lacustrine dep...Objective The Simao Basin in Yunnan Province has developed Cretaceous evaporite-bearing clastic deposits, including the Mangang and Mengyejing Formations which were originally interpreted as fluvial and lacustrine deposits. The Mangang Fm. composed of well-rounded quartz sandstones, were commonly considered as the bottom part of the Mengyejing salt series. Dttring last decades,展开更多
The giant potash deposit on the Khorat Plateau is one of the most promising targets for exploitation of potassium salts.So far,many researches and geologic survey have been conducted on the giant potash deposits.Hence...The giant potash deposit on the Khorat Plateau is one of the most promising targets for exploitation of potassium salts.So far,many researches and geologic survey have been conducted on the giant potash deposits.Hence,it is necessary to make an overall review on the potash deposits.The potash deposit on the Khorat Plateau was formed during the Middle to Late Cretaceous,during which seawater was enriched in Ca2+and depleted in SO42-compared with those of modern seawater.In addition to seawater,continental water and hydrothermal fluids could have affected the evaporite basins.The seawater was probably derived from Tethys ocean,and the brine should have evaporated to some extent before entering into the basin systems based on the evidence of absence of carbonates and unproportionate sulphate compared with chloride salts.The paleo-climate during Middle to Late Cretaceous was characterized as high temperature and extremely arid environment,which is favourable for deposition of potassium-magnesium saline minerals.The major saline minerals are of anhydrite,halite,carnallite,sylvite and,tachyhydrite,with trace amounts of borates.The resources of the potash deposit on the Khorat Plateau could be approximately as much as 400×109 t of carnallite and 7×109 t of sylvite.The evaporite sequences have been deformed and altered by postdepositinal processes,including tectonic movements and chemical alteration.Salt domes were formed in the postdepositional processes.Based on the analyses of geophysical surveys and drilling projects,high-quality sylvinite ores are commonly found at the flanks of those salt domes due to incongruent dissolution of carnallite.The furure potential prospecting areas for the highquality sylvinite ores would be on the edges of the Khorat Plateau.展开更多
The Lop Nur playa is located in the eastern part of the Tarim Basin, Xinjiang. From the late Middle Pleistocene to the Late Pleistocene, the Lop Nur gradually evolved into a salt lake. Huge amounts of glauberite miner...The Lop Nur playa is located in the eastern part of the Tarim Basin, Xinjiang. From the late Middle Pleistocene to the Late Pleistocene, the Lop Nur gradually evolved into a salt lake. Huge amounts of glauberite minerals were deposited, accompanied by large-scale potash-bearing brines gathered. The unique sedimentary characteristics of the lake have not yet been identified.展开更多
1 Introduction Most of the world well know potash mines are deposited in marine environment.Regarding the serious potash shortage,no significant progress has been made in marine potash in China,while the terrestrial p...1 Introduction Most of the world well know potash mines are deposited in marine environment.Regarding the serious potash shortage,no significant progress has been made in marine potash in China,while the terrestrial potash展开更多
1 Introduction Currently,all six different continents have discovered potash deposits and potash-bearing salt lake saline water.However,the distribution is extremely uneven,which is mostly concentrated in Canada,Russi...1 Introduction Currently,all six different continents have discovered potash deposits and potash-bearing salt lake saline water.However,the distribution is extremely uneven,which is mostly concentrated in Canada,Russia,Middle-Asia and展开更多
Located in the eastern part of the Tarim basin, Xinjiang, the Lop Nur was an ultimate water catchment area of the Tarim basin during the Quaternary. Through nearly ten years of investigation and research, the authors ...Located in the eastern part of the Tarim basin, Xinjiang, the Lop Nur was an ultimate water catchment area of the Tarim basin during the Quaternary. Through nearly ten years of investigation and research, the authors have found a superlarge brine potash deposit in the Luobei subbasin—a secondary basin of the Lop Nur depression. The deposit has been mined now. On that basis, the authors propose new theories on the genesis of the potash rock deposit. In the tectonic and geomorphologic contexts, the Tarim basin lies in a 'high mountain-deep basin' environment. At the beginning of the Quaternary, influenced by the neotectonic movement, the Lop Nur evolved into a 'deep basin' in the Tarim basin. At the end of the middle Pleistocene, neotectonic migration began to take place in the interior of the Lop Nur and a new secondary deep basin—the Luobei subbasin—formed gradually. Despite its small area, it is actually the deepest subbasin in the Lop Nur depression, where brines of the Lop Nur Salt Lake gather and evaporate, thus providing materials for the formation of a superlarge brine potash rock deposit. With respect to the phenomenon of brine concentration and change with deepening of the lake, the authors propose a model of 'high mountain-deep basin' tectonic migration for potash concentration. In the sedimentological context, the honeycomb-shaped voids developed in glauberite rock in the subbasin are good space for potash-rich brine accumulation. Study indicates that the deposition of glauberite requires recharge of calcium-rich water. In the Tarim area the calcium-rich water might come from deep formation water or oilfield water, and the river water recharging the Lop Nur Salt Lake was rich in sulfate radicals and other components; in addition, the climate in the area was very dry and the brine evaporated steadily, thus resulting in deposition of substantial amount of glauberite, potash accumulation in intercrystal brine and final formation of the potash deposit. Generally, potash formation in a salt lake undergoes a three-stage process of 'carbonates—?sulfates (gypsum and glauberite)—^chlorides (halite etc.)', but in the study area there only occurred a two-stage process of 'carbonates—>sulfates (gypsum and glauberite)'. The authors call this new geological phenomenon the 'two-stage potash formation' model. In conclusion, the superlarge Lop Nur potash deposit is the result of combined 'high mountain-deep basin' tectonism and 'two-stage potash formation'.展开更多
China was formed by amalgamation of several small continental blocks (cratons), micro, blocks and orogenic belts in different paleoclimatic settings. It may be correlated with other continental blocks but has its ow...China was formed by amalgamation of several small continental blocks (cratons), micro, blocks and orogenic belts in different paleoclimatic settings. It may be correlated with other continental blocks but has its own specific characteristics; therefore the tectonic environments of China's marine and continental saline basins and salt, and potash, forming environment have some specific characteristics: multiple phases of salt formation, difference in salt, forming ages, migration and concentration of salt, forming processes and diversity of component materials, as well as small sizes of marine saline basins and great changes of saline basins in the late stage and occurrence of abundant liquid mineral resources. The nature of the tectonic basement exerted a key controlling effect on the formation of potash basins. The stable tectonic region was favorable for potash concentration in a quasi, stable region, and quasi, and the quasi-stable region was favorable for salt concentration and potash formation in a local stable tectonic region. Most China's major ancient saline basins occur in "quasi, cratons (continental block)"; especially all the marine saline basins occur in continental blocks with the Precambrian basement. These regions are the key ones for potash search. Most relatively large, scale soluble salt deposits are developed in relatively stable continental nuclei. According to the characteristics of the tectonic domains where China's salt, forming basins are located, the North China, Yangtze and Tarim, Qaidam salt minerogenetic domains and the northern Qiangtang, western Yunnan salt minerogenetic belt may be distinguished. Their salt and potash prospects will be discussed separately.展开更多
Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and...Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and laboratory investigations,this study analyzes the origin and properties of carbonates within the context of regional potash formation.Petrographic studies show that magnesite deposits,with the characteristics of sedimentary origin.The results of elemental geochemical analysis show that the carbonates in this area were formed in the sedimentary environment via evaporation followed by concentration,and the formation of magnesite was possibly caused by the substitution of calcium in the dolomite with magnesium-rich brine.Theδ^(13)C values of carbonats in the study area are between5.9‰and 9.1‰.Theδ^(18)O values of magnesite samples range from-7.3‰to-1.3‰,and theδ^(18)O values of dolomites range from-10.3‰to-8.4‰.All the calculated Z values of oxygen isotopes of carbonates greater than 120.A comprehensive analysis of carbon and oxygen isotopes indicates that the magnesite was formed in a highly concentrated Marine sedimentary environment and does not show any relation with the metasomatism of hydrothermal fluids.The results on the correlation of magnesite with seawater and its sedimentary origin provide key information for explaining the migration direction of brine between the Changdu and Lanping-Simao Basins.The residual metamorphic seawater in the Changdu Basin migrated to the Lanping-Simao Basin,where potash underwent deposition.Whereas,magnesite and dolomite in the early stage of potash formation were left in the Changdu Basin.展开更多
文摘The Lop Nur Salt Lake, located in the eastern part of the Tarim Basin, Xinjiang, China, has become a playa in the Quaternary. Rhombic in shape, the Lop Nur depression is mainly controlled by the NE-striking and nearly N-S-striking sets of faults. Since 1995, a superlarge brine potash deposit with potash resources of 2.50×10^8s t has been found in the Luobei subbasin in the northeastern part of the Lop Nur. We intensively studied the features and formation mechanism of faults inside the Lop Nur through satellite images, geomorphologic survey and continuous conductivity imaging and found seven subparallel graben faults formed under the action of nearly N 10° E principal compressional stress during deposition of the Lop Nur Salt Lake. These faults are up to 〉60 km long and 1-4 km wide and may extend downward for 1000 m or more. It is just under the action of these tensional faults that potash subbasius formed. The largest subbasin is the Luobei subbasin and the smaller ones are the Luoxi hollow, Erbei hollow and Tienan hollow. Investigation also indicates that the graben faults in the Lop Nur not only control the origin of the potash subbasins, but they themselves are also good brine reservoir structures, in which abundant potash-rich brines are stored. Therefore, The faults had played an important role in the potash formation of the Lop Nur.
基金funded by the National Basic Research Program of China(No.2011CB403007)the State Key Program of National Natural Science of China(No.40830420)
文摘Potash deposits commonly accumulate in highly restricted settings at the final stage of brine evaporation. This does not mean that potash deposits are formed simply as a result of the evaporation concentration of seawater or lake water, but rather as a coupling result of particular provenance, tectonics and climate activities. In this paper, we focus on the formative mechanism of the potash deposits of Lop Nur depression in Tarim Basin to interpret the detailed coupling mechanism among provenance, tectonics and climate. In terms of the provenance of Lop Nur Lake, the water of the Tarim River which displays "potassium-rich" characteristics play an important role. In addition, the Pliocene and Lower-Middle Pleistocene clastic beds surrounding Lop Nur Lake host a certain amount of soluble potassium and thus serves as "source beds" for potash formation. During the late Pliocene, the Lop Nur region has declined and evolved into a great lake from the previous piedmont and diluvial fan area. Since the mid Pleistocene, the great-united Lop Nur Lake has been separated and has generated a chain system consisting of Taitema Lake, Big Ear Lake and Luobei Lake which has turned into the deepest sag in Lop Nur Lake. Dry climate in Lop Nur region has increased since the Pliocene, and became extreme at the late Pleistocene. The study implies that potash formation in Lop Nur Lake depends on the optimal combination of extreme components of provenance, tectonics and climate during a shorter-term period. The optimal patterns of three factors are generally characterized by the long-term accumulation and preliminary enrichment of potassium, the occurrence of the deepest sub-depression and the appearance of an extremely arid climate in Lop Nur region. These factors have been interacting synergistically since the forming of the saline lake and in the later stages strong "vapor extraction" caused by extremely arid climate is needed to trigger large scale mineralization of potash deposits.
基金supported by the Chinese National Key Project for Basic Research(grant No. 2011CB403007)the National Natural Science Foundation of China(grant No.41602127)
文摘Objective The Simao Basin in Yunnan Province has developed Cretaceous evaporite-bearing clastic deposits, including the Mangang and Mengyejing Formations which were originally interpreted as fluvial and lacustrine deposits. The Mangang Fm. composed of well-rounded quartz sandstones, were commonly considered as the bottom part of the Mengyejing salt series. Dttring last decades,
基金This study is finished through the cooperation project between China Geological Survey and Department of Mineral Resources(Thailand)supported by the National Key Project for Basic Research of China(2011CB403007)+2 种基金the National Natural Science Foundation of China(41572067,91855104,41802111)the Geological Survey Project(DD20190437)"Mineral potential exploration and assessment for potash"by the Government of Thailand.
文摘The giant potash deposit on the Khorat Plateau is one of the most promising targets for exploitation of potassium salts.So far,many researches and geologic survey have been conducted on the giant potash deposits.Hence,it is necessary to make an overall review on the potash deposits.The potash deposit on the Khorat Plateau was formed during the Middle to Late Cretaceous,during which seawater was enriched in Ca2+and depleted in SO42-compared with those of modern seawater.In addition to seawater,continental water and hydrothermal fluids could have affected the evaporite basins.The seawater was probably derived from Tethys ocean,and the brine should have evaporated to some extent before entering into the basin systems based on the evidence of absence of carbonates and unproportionate sulphate compared with chloride salts.The paleo-climate during Middle to Late Cretaceous was characterized as high temperature and extremely arid environment,which is favourable for deposition of potassium-magnesium saline minerals.The major saline minerals are of anhydrite,halite,carnallite,sylvite and,tachyhydrite,with trace amounts of borates.The resources of the potash deposit on the Khorat Plateau could be approximately as much as 400×109 t of carnallite and 7×109 t of sylvite.The evaporite sequences have been deformed and altered by postdepositinal processes,including tectonic movements and chemical alteration.Salt domes were formed in the postdepositional processes.Based on the analyses of geophysical surveys and drilling projects,high-quality sylvinite ores are commonly found at the flanks of those salt domes due to incongruent dissolution of carnallite.The furure potential prospecting areas for the highquality sylvinite ores would be on the edges of the Khorat Plateau.
文摘The Lop Nur playa is located in the eastern part of the Tarim Basin, Xinjiang. From the late Middle Pleistocene to the Late Pleistocene, the Lop Nur gradually evolved into a salt lake. Huge amounts of glauberite minerals were deposited, accompanied by large-scale potash-bearing brines gathered. The unique sedimentary characteristics of the lake have not yet been identified.
基金supported by the (973) National Basic Research Program of China (2011CB403006)
文摘1 Introduction Most of the world well know potash mines are deposited in marine environment.Regarding the serious potash shortage,no significant progress has been made in marine potash in China,while the terrestrial potash
基金funded by National Program on Key Basic Research Project of China - 973 Program" Potash formation mechanism, conditions and late evolution in Ordovician ancient epicontinental sea basin, Erdos" (No. 2011CB403001)China Geological survey work Program - " Potash resources investigation and evaluation in Northern Shaanxi Ordovician Salt Basin " (No. 1212011085516)
文摘1 Introduction Currently,all six different continents have discovered potash deposits and potash-bearing salt lake saline water.However,the distribution is extremely uneven,which is mostly concentrated in Canada,Russia,Middle-Asia and
基金the Oriented Foundation Proiect (DKD 95—22) the form er Ministry of Geology and Mineral Resources,State 305 Project(96-915—08—05)+2 种基金 the Ministry of Science Technology and Project 992025 the Ministry of Land and Resources.
文摘Located in the eastern part of the Tarim basin, Xinjiang, the Lop Nur was an ultimate water catchment area of the Tarim basin during the Quaternary. Through nearly ten years of investigation and research, the authors have found a superlarge brine potash deposit in the Luobei subbasin—a secondary basin of the Lop Nur depression. The deposit has been mined now. On that basis, the authors propose new theories on the genesis of the potash rock deposit. In the tectonic and geomorphologic contexts, the Tarim basin lies in a 'high mountain-deep basin' environment. At the beginning of the Quaternary, influenced by the neotectonic movement, the Lop Nur evolved into a 'deep basin' in the Tarim basin. At the end of the middle Pleistocene, neotectonic migration began to take place in the interior of the Lop Nur and a new secondary deep basin—the Luobei subbasin—formed gradually. Despite its small area, it is actually the deepest subbasin in the Lop Nur depression, where brines of the Lop Nur Salt Lake gather and evaporate, thus providing materials for the formation of a superlarge brine potash rock deposit. With respect to the phenomenon of brine concentration and change with deepening of the lake, the authors propose a model of 'high mountain-deep basin' tectonic migration for potash concentration. In the sedimentological context, the honeycomb-shaped voids developed in glauberite rock in the subbasin are good space for potash-rich brine accumulation. Study indicates that the deposition of glauberite requires recharge of calcium-rich water. In the Tarim area the calcium-rich water might come from deep formation water or oilfield water, and the river water recharging the Lop Nur Salt Lake was rich in sulfate radicals and other components; in addition, the climate in the area was very dry and the brine evaporated steadily, thus resulting in deposition of substantial amount of glauberite, potash accumulation in intercrystal brine and final formation of the potash deposit. Generally, potash formation in a salt lake undergoes a three-stage process of 'carbonates—?sulfates (gypsum and glauberite)—^chlorides (halite etc.)', but in the study area there only occurred a two-stage process of 'carbonates—>sulfates (gypsum and glauberite)'. The authors call this new geological phenomenon the 'two-stage potash formation' model. In conclusion, the superlarge Lop Nur potash deposit is the result of combined 'high mountain-deep basin' tectonism and 'two-stage potash formation'.
基金supported by projects of China Geological Survey(grants 1212010918025 and 1212010011810)National Natural Science Foundation of China and joint foundation(grants 40531002 and U0833601)
文摘China was formed by amalgamation of several small continental blocks (cratons), micro, blocks and orogenic belts in different paleoclimatic settings. It may be correlated with other continental blocks but has its own specific characteristics; therefore the tectonic environments of China's marine and continental saline basins and salt, and potash, forming environment have some specific characteristics: multiple phases of salt formation, difference in salt, forming ages, migration and concentration of salt, forming processes and diversity of component materials, as well as small sizes of marine saline basins and great changes of saline basins in the late stage and occurrence of abundant liquid mineral resources. The nature of the tectonic basement exerted a key controlling effect on the formation of potash basins. The stable tectonic region was favorable for potash concentration in a quasi, stable region, and quasi, and the quasi-stable region was favorable for salt concentration and potash formation in a local stable tectonic region. Most China's major ancient saline basins occur in "quasi, cratons (continental block)"; especially all the marine saline basins occur in continental blocks with the Precambrian basement. These regions are the key ones for potash search. Most relatively large, scale soluble salt deposits are developed in relatively stable continental nuclei. According to the characteristics of the tectonic domains where China's salt, forming basins are located, the North China, Yangtze and Tarim, Qaidam salt minerogenetic domains and the northern Qiangtang, western Yunnan salt minerogenetic belt may be distinguished. Their salt and potash prospects will be discussed separately.
基金the financial support from the Second Tibetan Plateau Scientific Expedition and Research(Grant No.2019QZKK0805)the postdoctoral project of Qinghai Institute of Salt Lakes(Grant No.E260DZ0401)+1 种基金the Kunlun Talent Project in Qinghai Province(Grant No.E340DZ0801)the Qinghai Provincial Department of Science and Technology Project(Grant No.2024-ZJ-722)。
文摘Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and laboratory investigations,this study analyzes the origin and properties of carbonates within the context of regional potash formation.Petrographic studies show that magnesite deposits,with the characteristics of sedimentary origin.The results of elemental geochemical analysis show that the carbonates in this area were formed in the sedimentary environment via evaporation followed by concentration,and the formation of magnesite was possibly caused by the substitution of calcium in the dolomite with magnesium-rich brine.Theδ^(13)C values of carbonats in the study area are between5.9‰and 9.1‰.Theδ^(18)O values of magnesite samples range from-7.3‰to-1.3‰,and theδ^(18)O values of dolomites range from-10.3‰to-8.4‰.All the calculated Z values of oxygen isotopes of carbonates greater than 120.A comprehensive analysis of carbon and oxygen isotopes indicates that the magnesite was formed in a highly concentrated Marine sedimentary environment and does not show any relation with the metasomatism of hydrothermal fluids.The results on the correlation of magnesite with seawater and its sedimentary origin provide key information for explaining the migration direction of brine between the Changdu and Lanping-Simao Basins.The residual metamorphic seawater in the Changdu Basin migrated to the Lanping-Simao Basin,where potash underwent deposition.Whereas,magnesite and dolomite in the early stage of potash formation were left in the Changdu Basin.