This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as co...This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as colored Mises stress nephograms,were obtained.These resources were integrated into the original curriculum to conduct teaching experiments.The results show that the use of digital resources significantly improved the quality of teaching in EM.The integration of simulation technology in EM teaching provides a promising direction for the improvement of vocational education and the cultivation of high-quality skilled talents.The development and application of more simulation-based teaching cases should be studied by scholars.展开更多
Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has ...Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has a long construction period,is highly dangerous,and is difficult to experiment with.In order to solve the contradiction between the traditional theory teaching of civil engineering and the engineering training of students,the construction of virtual simulation experimental teaching courses with a high degree of realism,intuition,and accuracy can be used as a useful supplement and innovation of experimental and practical teaching.This paper takes the virtual simulation experimental teaching course of urban overpasses as an example,introduces the necessity and practicability of the course construction,and describes the experimental principle structure of the course,the simulation scene design,the experimental teaching process,the experimental method,etc.The course has achieved good application results,and it has been recognized as the first-class virtual simulation teaching course of the Chongqing Municipal Government,which provides certain references to the construction of the same type of courses in the civil engineering profession.展开更多
The layered model in Part I was used to simulate the internal tide in a stratified, two layer, and rectangular sea area with step like topography. The internal tide current velocities of the upper and lower layers and...The layered model in Part I was used to simulate the internal tide in a stratified, two layer, and rectangular sea area with step like topography. The internal tide current velocities of the upper and lower layers and the interfacial elevations were computed and the effect of the upper layer water depth and density difference were studied. Numerical experiments verified that the model can correctly simulate internal tides. The model was also applied to the northwestern part of the South China Sea to simulate the internal tides there with real topography. The distributions of internal tide amplitude in interfaces were delineated.展开更多
Gold deposits in shear zones in China can be divided into four types: ductile, brittle-ductile,ductileubrittle and britt1e. Among them, each type has its own geochemical characteristics: the Hetai gold deposit in Guan...Gold deposits in shear zones in China can be divided into four types: ductile, brittle-ductile,ductileubrittle and britt1e. Among them, each type has its own geochemical characteristics: the Hetai gold deposit in Guangdong province for example, is a kind of mylonite type gold deposit in a ductile shear zone, and the gold ore has the forms of layer and vein; the Erjia gold deposit formed in a brittleuductile shear zone, and the gold ore, being of two types, mylonite type and cataclasticaltered rock type, has the form of vein; the Shangguan gold deposit, Henan Province, was located in a ductile-brittle shear zone, and the gold ore is of two types, cataclastic-altered rock type and quartz vein type; and the Linglong gold deposit occurs in a brittle shear zone, with the main gold ore of quartz vein type having the forms of vein and lens. Simulating experiments on tectono-controlled formation of gold ores gave us the idea that not only the samples underwent crack deformation, but also changes occurred in chemical composition of minerals, and also caused gold to be remobilized and finally filled into the newlyuproduced fissures.展开更多
Based on the results of previous studies and under the direction of the theory of "ore deposit genesis",the authors made use of high temperature and high pressure experimental facilities and conditions at th...Based on the results of previous studies and under the direction of the theory of "ore deposit genesis",the authors made use of high temperature and high pressure experimental facilities and conditions at the Tectono-geochemistry Research Room under the State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,and put the focus on the multi-source of tectonically controlling ore-forming materials,the characteristics of multi-stage and multi-episode hydrothermal activities and mineralization and the characteristics of multi-genesis and multi-ore deposition so as to shed light on the metallogenic mechanisms of super-large Cu and Au deposits.In addition simulating experiments were made on multi-stage and multi-episode tectonic activities and rock and ore deformation,multi-stage and multi-episode tectonic activities and mobilization and migration of ore-forming materials,and multi-stage and multi-episode tectonic activities and superimposition and enrichment of ore-forming materials.The experimental results showed that under the action of multi-stage and multi-episode tectonic stress the deformation and fragmentation of not only rocks and ores have been intensified,and but also the ore-forming materials originally disbursed in the rocks and ores have been mobilized and migrated and superimposed and enriched.The experimental results also provided the scientific experimental data and grounds for deep-going research on the rules of metallogenesis and geneses of super-large ore deposits in the Dexing region,Jiangxi Province.展开更多
Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elasti...Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elastic and/or viscoelastic material on pile head impedance functions of the pile group is studied by relating the group stiffness to the static stiffness of a single pile.However,the prevailing elastic solutions may misestimate the resulting pile group response due to the lack of consideration for either soil(material)and/or soil-pile interface nonlinearities.It is well established that soil behaves nonlinearly under moderate-to-high loading amplitudes,and besides,the soil-pile interface nonlinearity can exist even at small loading amplitudes.This study addresses the effects of these nonlinearities on the vertical impedance functions of a 3×3-pile group using numerical methods by direct analyses and superposition using pile-to-pile interaction factors.The numerical results are validated using scaled model tests under 1 g conditions.The results highlight the overestimation of pile-to-pile interactions in the pile group when assuming elastic soil conditions.The cases either by direct analyses or superposition approach involving soil and soil-pile interface nonlinearities agree well with the experimental pile group responses under close-to-elastic and nonlinear conditions.展开更多
The flow field around a spur dike has three-dimensional characteristics. In order to analyze the influence of the flow field on pollutant transport, based on a compressive volume of fluid (VOF) scheme, the three-dim...The flow field around a spur dike has three-dimensional characteristics. In order to analyze the influence of the flow field on pollutant transport, based on a compressive volume of fluid (VOF) scheme, the three-dimensional transient compressive pollutant transport model (CPTM) and the cubic equation (CE) bounded differencing scheme were developed. For the calibration and validation of CPTM, laboratory experiments were carried out in a flume with a non-submerged spur dike. The spur dike was angled at 60°, 90°, and 120° from the upstream direction. The simulation results agreed with the experimental results. The simulations and experiments showed that the distribution of pollutant concentration was determined by circumfluence and the main flow. Concentration decay in the circumfluenee zone was slower than that in the main flow. Downstream of the spur dike, the concentration fluctuation became intensive with the increase of spur dike angle.展开更多
Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hes...Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hesigewula Sag were analyzed by gas chromatography-mass spectrometry(GC-MS).C14 bicyclic sesquiterpanes,namely,8β(H)-drimane,8β(H)-homodrimane,and 8 a(H)-homodrimane were detected and identified on basis of their diagnostic fragment ions(m/z123,179,193,and 207),and previously published mass spectra data,and these bicyclic sesquiterpanes presented relatively regular characteristics in their thermal evolution.The ratios 8β(H)-drimane/8β(H)-homodrimane,8β(H)-homodrimane/8 a(H)-homodrimane,and 8β(H)-drimane/8 a(H)-homodrimane all show a clear upward trend with increasing temperature below the temperature turning point.Thus,all these ratios can be used as evolution indexes of source rocks in the immature-lowmaturity stage.However,the last two ratios may be more suitable than the first ratio as valid parameters for measuring the extent of thermal evolution of organic matter in the immature-low-maturity stage because their change amplitude with increasing temperature is more obvious.展开更多
A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments o...A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments of inertia can navigate large height steps. Period-doubling has been observed when the space between steps grows. This period-doubling has been validated by experiments, and the results of experiments were coincident with the simulation.展开更多
Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carri...Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki (kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.展开更多
A series of 3D-C/SiC composites with different pyrolytic carbon (PyC) interracial layers (about 20~300 nm thick)were prepared by chemical vapor infiltration. Simulation experiments at different temperatures were perf...A series of 3D-C/SiC composites with different pyrolytic carbon (PyC) interracial layers (about 20~300 nm thick)were prepared by chemical vapor infiltration. Simulation experiments at different temperatures were performed byexposing C/SiC specimens in single and coupling gases partial pressure atmospheres, namely, O2, H2O vapor andmolten salt (Na+) vapor. It suggested that at intermediate temperature range (about 600~800℃) a dramatic effectof PyC thickness on the weight and strength change of C/SiC was shown, which was mainly influenced by O2 partialpressure; at high temperature range (about 1200~1300℃) the effect was not obvious relatively, which might beinfluenced by H2O vapor partial pressure; and finally at very high temperature range (>1500℃) the molten saltvapor was the factor of most possibility affecting the weight change of C/SiC.展开更多
In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out...In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out with a self-designed diagenetic simulation system. The experimental materials were modem sediments from dif- ferent sources, and the experiments were conducted under high temperature and high pressure. Results of the exper- iments show a binary function relation between primary porosity and mean size as well as sorting. With increasing overburden pressure during mechanical compaction, the evolution of porosity and permeability can be divided into rapid compaction at an early stage and slow compaction at a late stage, and the dividing pressure value of the two stages is about 12 MPa and the corresponding depth is about 600 m. In the slow compaction stage, there is a good exponential relationship between porosity and overburden pressure, while a good power function relationship exists between permeability and overburden pressure. There is also a good exponential relationship between porosity and permeability. The influence of particle size on sandstone mechanical compaction is mainly reflected in the slowcompaction stage, and the influence of sorting is mainly reflected in the rapid compaction stage. Abnormally high pressure effectively inhibits sandstone mechanical com- paction, and its control on sandstone mechanical com- paction is stronger than that of particle size and sorting. The influence of burial time on sandstone mechanical compaction is mainly in the slow compaction stage, and the porosity reduction caused by compaction is mainly con- trolled by average particle size.展开更多
Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height ...Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height are measured in a conical spouted bed of 100 mm I.D.at different gas velocities.The simulation results are compared with measurements of bed pressure drop and fountain height.The comparison shows that the drag coefficient model used in cylindrical beds under-predicted bed pressure drop and fountain height in conical spouted beds due to the partial weight of particles supported by the inclined side walls.It is found that the numerical results using the drag coefficient model proposed based on the conical spouted bed in this study are in good agreement with experimental data.The present study provides a useful basis for further works on the CFD simulation of conical spouted bed.展开更多
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe...An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.展开更多
Counter beam lighting was introduced as well as transverse symmetrical lighting and longitudinal symmetrical lighting.Simulation experiments were carried out by using DIAlux lighting software for the above three light...Counter beam lighting was introduced as well as transverse symmetrical lighting and longitudinal symmetrical lighting.Simulation experiments were carried out by using DIAlux lighting software for the above three lighting methods.The results show that counter beam lighting is more reasonable to be adopted in the tunnel entrance zone because its threshold increment of disability glare is greater.Counter beam lighting can improve the background luminance of the obstacles and lighting efficiency compared with transverse symmetrical lighting and longitudinal symmetrical lighting.Therefore,tunnel lighting energy-saving can be achieved by reducing the road luminance demands and luminaries power.Longitudinal symmetrical lighting is conducive to the large luminaries spacing in the tunnel internal zone;so power consumption can be reduced by decreasing the number of luminaries used.Tunnel walls are unsuitable to pave with smooth or bright material.Installation height of the luminaries has less effect on counter beam lighting.展开更多
Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different phys...Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different physical processes of the earth's surface-vegetation-atmosphere system more completely. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feas...展开更多
An ensemble-based method for the observation system simulation experiment(OSSE)is employed to design optimal observation stations and assess the present observation stations in the northeastern South China Sea(SCS).We...An ensemble-based method for the observation system simulation experiment(OSSE)is employed to design optimal observation stations and assess the present observation stations in the northeastern South China Sea(SCS).We employed the 20-year(1992-2012)sea surface height(SSH)data to design an array to monitor the intraseasonal to interannual variability.The results show that the most key region was found located at the northwest of Luzon Island(LI)where the energetic Luzon cyclonic gyre(LCG)occurs;other key regions include the edge of the LCG,the northwest of the Luzon Strait(LS),and the southwest of Taiwan,China.By contrast,we found that the present observation stations might oversample at the northwest of the LS and undersample at the northwest of LI.In addition,the optimal stations perform better in a larger area than the present stations.In vertical direction,the key layer is located within the upper 200-m depth,of which the surface and subsurface layers are most valuable to the observing system.展开更多
Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is...Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors.展开更多
This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulatio...This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.展开更多
基金Science and Technology Key Project of Beijing Polytechnic(Project number:2024X008-KXZ)。
文摘This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as colored Mises stress nephograms,were obtained.These resources were integrated into the original curriculum to conduct teaching experiments.The results show that the use of digital resources significantly improved the quality of teaching in EM.The integration of simulation technology in EM teaching provides a promising direction for the improvement of vocational education and the cultivation of high-quality skilled talents.The development and application of more simulation-based teaching cases should be studied by scholars.
基金Chongqing Institute of Technology’s 2022 Virtual Simulation Experiment“Golden Course”Construction Project“Virtual Simulation Experiment of Urban Overpass Vehicle Passage”2023 Teaching Method Reform and“Information Technology+”Smart Teaching Special Research Project Information Technology Multi-Dimensional Research Results of“Enabling Virtual Simulation Experiment Smart Teaching Reform and Practice”。
文摘Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has a long construction period,is highly dangerous,and is difficult to experiment with.In order to solve the contradiction between the traditional theory teaching of civil engineering and the engineering training of students,the construction of virtual simulation experimental teaching courses with a high degree of realism,intuition,and accuracy can be used as a useful supplement and innovation of experimental and practical teaching.This paper takes the virtual simulation experimental teaching course of urban overpasses as an example,introduces the necessity and practicability of the course construction,and describes the experimental principle structure of the course,the simulation scene design,the experimental teaching process,the experimental method,etc.The course has achieved good application results,and it has been recognized as the first-class virtual simulation teaching course of the Chongqing Municipal Government,which provides certain references to the construction of the same type of courses in the civil engineering profession.
文摘The layered model in Part I was used to simulate the internal tide in a stratified, two layer, and rectangular sea area with step like topography. The internal tide current velocities of the upper and lower layers and the interfacial elevations were computed and the effect of the upper layer water depth and density difference were studied. Numerical experiments verified that the model can correctly simulate internal tides. The model was also applied to the northwestern part of the South China Sea to simulate the internal tides there with real topography. The distributions of internal tide amplitude in interfaces were delineated.
文摘Gold deposits in shear zones in China can be divided into four types: ductile, brittle-ductile,ductileubrittle and britt1e. Among them, each type has its own geochemical characteristics: the Hetai gold deposit in Guangdong province for example, is a kind of mylonite type gold deposit in a ductile shear zone, and the gold ore has the forms of layer and vein; the Erjia gold deposit formed in a brittleuductile shear zone, and the gold ore, being of two types, mylonite type and cataclasticaltered rock type, has the form of vein; the Shangguan gold deposit, Henan Province, was located in a ductile-brittle shear zone, and the gold ore is of two types, cataclastic-altered rock type and quartz vein type; and the Linglong gold deposit occurs in a brittle shear zone, with the main gold ore of quartz vein type having the forms of vein and lens. Simulating experiments on tectono-controlled formation of gold ores gave us the idea that not only the samples underwent crack deformation, but also changes occurred in chemical composition of minerals, and also caused gold to be remobilized and finally filled into the newlyuproduced fissures.
基金State Key Laboratory Project: part of the results of research project funded by the State Key Lab. of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences (Grant No. 200709)
文摘Based on the results of previous studies and under the direction of the theory of "ore deposit genesis",the authors made use of high temperature and high pressure experimental facilities and conditions at the Tectono-geochemistry Research Room under the State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,and put the focus on the multi-source of tectonically controlling ore-forming materials,the characteristics of multi-stage and multi-episode hydrothermal activities and mineralization and the characteristics of multi-genesis and multi-ore deposition so as to shed light on the metallogenic mechanisms of super-large Cu and Au deposits.In addition simulating experiments were made on multi-stage and multi-episode tectonic activities and rock and ore deformation,multi-stage and multi-episode tectonic activities and mobilization and migration of ore-forming materials,and multi-stage and multi-episode tectonic activities and superimposition and enrichment of ore-forming materials.The experimental results showed that under the action of multi-stage and multi-episode tectonic stress the deformation and fragmentation of not only rocks and ores have been intensified,and but also the ore-forming materials originally disbursed in the rocks and ores have been mobilized and migrated and superimposed and enriched.The experimental results also provided the scientific experimental data and grounds for deep-going research on the rules of metallogenesis and geneses of super-large ore deposits in the Dexing region,Jiangxi Province.
文摘Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elastic and/or viscoelastic material on pile head impedance functions of the pile group is studied by relating the group stiffness to the static stiffness of a single pile.However,the prevailing elastic solutions may misestimate the resulting pile group response due to the lack of consideration for either soil(material)and/or soil-pile interface nonlinearities.It is well established that soil behaves nonlinearly under moderate-to-high loading amplitudes,and besides,the soil-pile interface nonlinearity can exist even at small loading amplitudes.This study addresses the effects of these nonlinearities on the vertical impedance functions of a 3×3-pile group using numerical methods by direct analyses and superposition using pile-to-pile interaction factors.The numerical results are validated using scaled model tests under 1 g conditions.The results highlight the overestimation of pile-to-pile interactions in the pile group when assuming elastic soil conditions.The cases either by direct analyses or superposition approach involving soil and soil-pile interface nonlinearities agree well with the experimental pile group responses under close-to-elastic and nonlinear conditions.
基金supported by the Eleventh Five-year Scientific and Technical Plan (Grant No. 2006BAK01B02-03)the Course Foundation of Nanjing University of Technology (Grant No. 39714004)
文摘The flow field around a spur dike has three-dimensional characteristics. In order to analyze the influence of the flow field on pollutant transport, based on a compressive volume of fluid (VOF) scheme, the three-dimensional transient compressive pollutant transport model (CPTM) and the cubic equation (CE) bounded differencing scheme were developed. For the calibration and validation of CPTM, laboratory experiments were carried out in a flume with a non-submerged spur dike. The spur dike was angled at 60°, 90°, and 120° from the upstream direction. The simulation results agreed with the experimental results. The simulations and experiments showed that the distribution of pollutant concentration was determined by circumfluence and the main flow. Concentration decay in the circumfluenee zone was slower than that in the main flow. Downstream of the spur dike, the concentration fluctuation became intensive with the increase of spur dike angle.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41672117 and 41503034)the Hubei Provincial Natural Science Foundation of China (Project No. 2017CFA027)+1 种基金the Open Subject of Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Mineral (Baojun Liu Geoscience Science Foundation) (DMSM2017084)the Open Subject of the State Key Laboratory of Petroleum Resources and Prospecting (PRP/open-1509)
文摘Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hesigewula Sag were analyzed by gas chromatography-mass spectrometry(GC-MS).C14 bicyclic sesquiterpanes,namely,8β(H)-drimane,8β(H)-homodrimane,and 8 a(H)-homodrimane were detected and identified on basis of their diagnostic fragment ions(m/z123,179,193,and 207),and previously published mass spectra data,and these bicyclic sesquiterpanes presented relatively regular characteristics in their thermal evolution.The ratios 8β(H)-drimane/8β(H)-homodrimane,8β(H)-homodrimane/8 a(H)-homodrimane,and 8β(H)-drimane/8 a(H)-homodrimane all show a clear upward trend with increasing temperature below the temperature turning point.Thus,all these ratios can be used as evolution indexes of source rocks in the immature-lowmaturity stage.However,the last two ratios may be more suitable than the first ratio as valid parameters for measuring the extent of thermal evolution of organic matter in the immature-low-maturity stage because their change amplitude with increasing temperature is more obvious.
文摘A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments of inertia can navigate large height steps. Period-doubling has been observed when the space between steps grows. This period-doubling has been validated by experiments, and the results of experiments were coincident with the simulation.
文摘Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki (kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.
文摘A series of 3D-C/SiC composites with different pyrolytic carbon (PyC) interracial layers (about 20~300 nm thick)were prepared by chemical vapor infiltration. Simulation experiments at different temperatures were performed byexposing C/SiC specimens in single and coupling gases partial pressure atmospheres, namely, O2, H2O vapor andmolten salt (Na+) vapor. It suggested that at intermediate temperature range (about 600~800℃) a dramatic effectof PyC thickness on the weight and strength change of C/SiC was shown, which was mainly influenced by O2 partialpressure; at high temperature range (about 1200~1300℃) the effect was not obvious relatively, which might beinfluenced by H2O vapor partial pressure; and finally at very high temperature range (>1500℃) the molten saltvapor was the factor of most possibility affecting the weight change of C/SiC.
基金co-funded by the National Natural Science Foundation of China (Grant No.U1262203)the National Science and Technology Special Grant (Grant No.2011ZX05009003)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.14CX06013A)the Chinese Scholarship Council (No.201406450019)
文摘In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out with a self-designed diagenetic simulation system. The experimental materials were modem sediments from dif- ferent sources, and the experiments were conducted under high temperature and high pressure. Results of the exper- iments show a binary function relation between primary porosity and mean size as well as sorting. With increasing overburden pressure during mechanical compaction, the evolution of porosity and permeability can be divided into rapid compaction at an early stage and slow compaction at a late stage, and the dividing pressure value of the two stages is about 12 MPa and the corresponding depth is about 600 m. In the slow compaction stage, there is a good exponential relationship between porosity and overburden pressure, while a good power function relationship exists between permeability and overburden pressure. There is also a good exponential relationship between porosity and permeability. The influence of particle size on sandstone mechanical compaction is mainly reflected in the slowcompaction stage, and the influence of sorting is mainly reflected in the rapid compaction stage. Abnormally high pressure effectively inhibits sandstone mechanical com- paction, and its control on sandstone mechanical com- paction is stronger than that of particle size and sorting. The influence of burial time on sandstone mechanical compaction is mainly in the slow compaction stage, and the porosity reduction caused by compaction is mainly con- trolled by average particle size.
基金Supported by the National Natural Science Foundation of China(51206020)the Program for New Century Excellent Talents in University(NCET-12-0703)the Northeast Petroleum University Foundation
文摘Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height are measured in a conical spouted bed of 100 mm I.D.at different gas velocities.The simulation results are compared with measurements of bed pressure drop and fountain height.The comparison shows that the drag coefficient model used in cylindrical beds under-predicted bed pressure drop and fountain height in conical spouted beds due to the partial weight of particles supported by the inclined side walls.It is found that the numerical results using the drag coefficient model proposed based on the conical spouted bed in this study are in good agreement with experimental data.The present study provides a useful basis for further works on the CFD simulation of conical spouted bed.
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-major project-Research on tight oil-shale oil reservoir engineering methods and key technologies in Ordos Basin(ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015).
文摘An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.
基金Funded by Key Laboratory of Ministry of Education for Conveyance and Equipment,East China Jiaotong University(No. 09JD09)
文摘Counter beam lighting was introduced as well as transverse symmetrical lighting and longitudinal symmetrical lighting.Simulation experiments were carried out by using DIAlux lighting software for the above three lighting methods.The results show that counter beam lighting is more reasonable to be adopted in the tunnel entrance zone because its threshold increment of disability glare is greater.Counter beam lighting can improve the background luminance of the obstacles and lighting efficiency compared with transverse symmetrical lighting and longitudinal symmetrical lighting.Therefore,tunnel lighting energy-saving can be achieved by reducing the road luminance demands and luminaries power.Longitudinal symmetrical lighting is conducive to the large luminaries spacing in the tunnel internal zone;so power consumption can be reduced by decreasing the number of luminaries used.Tunnel walls are unsuitable to pave with smooth or bright material.Installation height of the luminaries has less effect on counter beam lighting.
基金National Natural Science Foundation of China (No. 40275004)State Key Laboratory of Atmosphere Physics and Chemistry
文摘Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different physical processes of the earth's surface-vegetation-atmosphere system more completely. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feas...
基金Supported by the National Key Research&Development Plan of China(Nos.2016YFC1401703,2016YFC1401702,2018YFC0309803)the National Natural Science Foundation of China(Nos.41506002,41676010,41476011,41676015,41606026)+1 种基金the Institution of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences(No.ISEE2019ZR0)the Guangzhou Science and Technology Foundation(No.201804010133)。
文摘An ensemble-based method for the observation system simulation experiment(OSSE)is employed to design optimal observation stations and assess the present observation stations in the northeastern South China Sea(SCS).We employed the 20-year(1992-2012)sea surface height(SSH)data to design an array to monitor the intraseasonal to interannual variability.The results show that the most key region was found located at the northwest of Luzon Island(LI)where the energetic Luzon cyclonic gyre(LCG)occurs;other key regions include the edge of the LCG,the northwest of the Luzon Strait(LS),and the southwest of Taiwan,China.By contrast,we found that the present observation stations might oversample at the northwest of the LS and undersample at the northwest of LI.In addition,the optimal stations perform better in a larger area than the present stations.In vertical direction,the key layer is located within the upper 200-m depth,of which the surface and subsurface layers are most valuable to the observing system.
基金The authors are grateful for financial support from the National Key Projects for Fundamental Research and Development of China(2021YFA1500803)the National Natural Science Foundation of China(51825205,52120105002,22102202,22088102,U22A20391)+1 种基金the DNL Cooperation Fund,CAS(DNL202016)the CAS Project for Young Scientists in Basic Research(YSBR-004).
文摘Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors.
基金National Natural Science Foundation of China under Grant No.51978184。
文摘This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.