The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is supported by a cable-net structure, whose change in shape leads to a stress range of approximately 500 MPa. This stress range is more than twice th...The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is supported by a cable-net structure, whose change in shape leads to a stress range of approximately 500 MPa. This stress range is more than twice the standard recom- mended value. The cable-net structure is thus the most critical and fragile part of the FAST reflector system. In this study, we first search for a more appropriate deforma- tion strategy that reduces the stress amplitude generated by the process of changing shape. Second, we roughly estimate the tracking trajectory of the telescope during its service life, and conduct an extensive numerical investigation to assess the require- ments for fatigue resistance. Finally, we develop a new type of steel cable system that satisfies the cable requirements for construction of FAST.展开更多
Couple of DOF technique in FEM and the algorithm for equation group solution in the whole stiffness matrix is studied in this paper. A new procedure is developed for the analysis of telescope beam structure. This meth...Couple of DOF technique in FEM and the algorithm for equation group solution in the whole stiffness matrix is studied in this paper. A new procedure is developed for the analysis of telescope beam structure. This method can solve most of the complex structural problems in engineering practice. This method has been used in the FEM analysis of pile frame of muhifunetion drilling machine, which is designed and manufactured by our research group. The right analysis result can improves the design efficiency and the reliability of the structure and reduce the design cost.展开更多
基金supported by the Young Scientist Project of the National Natural Science Foundation of China(Grant No.11303059)the Chinese Academy of Sciences Youth Innovation Promotion Association
文摘The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is supported by a cable-net structure, whose change in shape leads to a stress range of approximately 500 MPa. This stress range is more than twice the standard recom- mended value. The cable-net structure is thus the most critical and fragile part of the FAST reflector system. In this study, we first search for a more appropriate deforma- tion strategy that reduces the stress amplitude generated by the process of changing shape. Second, we roughly estimate the tracking trajectory of the telescope during its service life, and conduct an extensive numerical investigation to assess the require- ments for fatigue resistance. Finally, we develop a new type of steel cable system that satisfies the cable requirements for construction of FAST.
文摘Couple of DOF technique in FEM and the algorithm for equation group solution in the whole stiffness matrix is studied in this paper. A new procedure is developed for the analysis of telescope beam structure. This method can solve most of the complex structural problems in engineering practice. This method has been used in the FEM analysis of pile frame of muhifunetion drilling machine, which is designed and manufactured by our research group. The right analysis result can improves the design efficiency and the reliability of the structure and reduce the design cost.