期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A study on the uncertainties of the centroid depth of the 2013 Lushan earthquake from teleseimic body wave data 被引量:6
1
作者 Weiwen Chen Decai Wang Shengji Wei 《Earthquake Science》 2013年第3期161-168,共8页
Centroid depth of earthquakes is essential for seismic hazard mitigation. But, various studies provided different solutions for the centroid depth of the damaging 2013 Lushan earthquake, thus hindering further studies... Centroid depth of earthquakes is essential for seismic hazard mitigation. But, various studies provided different solutions for the centroid depth of the damaging 2013 Lushan earthquake, thus hindering further studies of the earthquake processes. To resolve its centroid depth and assess the uncertainties, we apply the teleseismic cut and paste method to invert for centroid depth with teleseismic body waves in the epicentral distance of 300-90~. We performed the inversion for P waves only as well the case of both P and SH waves and found that both cases lead to depth solutions with difference less than 0.5 km. We also investigated the effects on depth inversion from azimuth gap of seismic stations, source duration, and comer fre- quency of filter. These various tests show that even azi- muthal distribution of seismic stations is helpful for accurate depth inversion. It is also found that estimate of centroid depth is sensitive to source duration. Moreover, the depth is biased to larger values when corner frequency of low-pass filter is very low. The uncertainty in the velocity model can also generate some error in the depth estimation (- 1.0 km).With all the above factors consid- ered, the centroid depth of Lushan earthquake is proposed to be around 12 km, with uncertainty about 2 km. 展开更多
关键词 Lushan earthquake Centroid depth teleseismic body wave Cut and paste
下载PDF
Source rupture process inversion of the 2013 Lushan earthquake,China 被引量:6
2
作者 Zhang Lifen Iman Fatchurochman +2 位作者 Liao Wulin Li Jinggang Wang Qiuliang 《Geodesy and Geodynamics》 2013年第2期16-21,共6页
The spatial and temporal slip distribution of the Lushan earthquake was estimated using teleseismic body wave data. To perform a stable inversion, we applied smoothing constraints and determined their optimal relative... The spatial and temporal slip distribution of the Lushan earthquake was estimated using teleseismic body wave data. To perform a stable inversion, we applied smoothing constraints and determined their optimal relative weights on the observed data using an optimized Akaike' s Bayesian Information Criterion (ABIC). The inversion generated the source parameters. Strike, dip and slip were 218°, 39° and 100. 8° ,respectively. A seismic moment (M0) was 2. 1 × 10^20 Nm with a moment magnitude (Mw) of 6. 8, and a source duration was approximately 30 second. The rupture propagated along the dip direction, and the maximum slip occurred at the hypocenter. The maximum slip was approximately 2. 1 m, although this earthquake did not cause an apparent surface rupture. The energy was mainly released within 10 second. In addition, the Lushan earthquake was apparently related to the 2008 Wenchuan earthquake. However, the question of whether it was an aftershock of the Wenchuan earthquake requires further study. 展开更多
关键词 source rupture process teleseismic wave Lushan earthquake
下载PDF
Source rupture process of the 2015 Gorkha, Nepal Mw7.9 earthquake and its tectonic implications 被引量:6
3
作者 Lifen Zhang Jinggang Li +1 位作者 Wulin Liao Qiuliang Wang 《Geodesy and Geodynamics》 2016年第2期124-131,共8页
On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study t... On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study the rupture process of the earthquake to seek answers. Inversion of teleseismic body-wave data is applied to estimate the rupture process of the 2015 Nepal earthquake. To obtain stable solutions, smoothing and non-negative constraints are introduced. 48 teleseismic stations with good coverage are chosen. Finite fault model is established with length and width of 195 km and 150 km, and we set the initial seismic source parameters referring to CMT solutions. Inversion results indicate that the focal mechanism of this earthquake is a thrust fault type, and the strike, dip and rake angle are in accordance with CMT results. The seismic moment is 0.9195 ×10^(21)Nm(Mw7.9), and source duration is about 70s. The rupture nucleated near the hypocenter and then propagated along the dip direction to the southeast, and the maximum slip amounts to 5.2 m. Uncertainties on the amount of slip retrieved by different inversion methods still exist, the overall characteristics are inconsistent. The lack of shallow slip during the 2015 Gorkha earthquake implies future seismic hazard and this region should be paid more attention to. 展开更多
关键词 2015 Gorkha earthquake Rupture process Main frontal thrust fault Seismic hazard teleseismic P wave
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部