Thermomechanical processing is a metallurgical operation to produce high-strength steel bars (rebars), through combining plastic deformation with thermal processes like heat treatment, water quenching, heating, and co...Thermomechanical processing is a metallurgical operation to produce high-strength steel bars (rebars), through combining plastic deformation with thermal processes like heat treatment, water quenching, heating, and cooling at various rates into a single process. Ribbed reinforcing steel bars (rebars) are used for the reinforcement of concrete structures. Tempcore is a unique process to produce high-yield-strength rebars from mild steel without addition of a high weight percentage of costly alloying elements. The strength of rebar originates from the formation of a surface layer consisting of quenched and tempered martensite that surrounds a core composed of ferrite and pearlite. The economic advantages of this process are significant in comparison to those processes requiring alloying elements or further metal working to improve the mechanical properties. However, when there is a limitation in the water-cooling capacity, the required volume fraction of the martensite layer can’t be accomplished particularly when rolling bigger diameters of 32 mm - 40 mm at a higher rolling speed to maintain high productivity. Accordingly, a small addition of microalloying elements vanadium or niobium could be used in combination with Tempcore process to obtain high-strength steel rebars. In this contribution, 0.06 weight percentage of vanadium is added to the Tempcore treated rebars to satisfy ASTM A 706 Standard of Rebar Grade 80 PSI [550 MPa]. In order to decrease the trials in the steel plant floor, thermodynamics equilibrium calculations are predicted by Thermo-Calc, CCT, TTT diagrams are calculated by JMat Pro and the kinetics evolution of the vanadium carbonitrides precipitates are predicted by the computational database Mat Calc. High yield strength and tensile strength are obtained due to the effect of fine dispersions of nanometer-scale vanadium carbonitrides precipitates inspected by transmission electron microscope.展开更多
The effect of tramp elements in the steel was intensively studied. It was found that the solubility of tramp elements decreased as the temperature decreased under normal cooling conditions. The tramp elements (Cu, Pb...The effect of tramp elements in the steel was intensively studied. It was found that the solubility of tramp elements decreased as the temperature decreased under normal cooling conditions. The tramp elements (Cu, Pb, and Sn) diffused toward the grain boundaries, and intermetallic compounds or rich phases which have low melting points were formed, causing reduction in ductility and failure during the bending test. Rebars with Cu content which were left to air cooling after the last step showed drop in elongation, up to 32 %. On contrast, the samples with high per- centage of tramp elements (Cu, Pb, and Sn) in the billet, which were rolled and subjected to Tempcore process, did not show drop in elongation or failure in bending test (especially for rebar with diameter less than 32 mm); however, copper must be less than 0.35 mass% to prevent the precipitation of Cu-rich zones of critical size in 32 mm. When quench- ing was applied, the tramp elements remained in the interstitial supersaturated solid solution positions inside the grains and would not have the chance to diffuse and form precipitates, hindering the copper precipitates from reac- hing the critical size necessary for impairing the properties. This would hinder the occurrence of the harmful effect of the tramp elements on the elongation or the hot shortness after rolling.展开更多
文摘Thermomechanical processing is a metallurgical operation to produce high-strength steel bars (rebars), through combining plastic deformation with thermal processes like heat treatment, water quenching, heating, and cooling at various rates into a single process. Ribbed reinforcing steel bars (rebars) are used for the reinforcement of concrete structures. Tempcore is a unique process to produce high-yield-strength rebars from mild steel without addition of a high weight percentage of costly alloying elements. The strength of rebar originates from the formation of a surface layer consisting of quenched and tempered martensite that surrounds a core composed of ferrite and pearlite. The economic advantages of this process are significant in comparison to those processes requiring alloying elements or further metal working to improve the mechanical properties. However, when there is a limitation in the water-cooling capacity, the required volume fraction of the martensite layer can’t be accomplished particularly when rolling bigger diameters of 32 mm - 40 mm at a higher rolling speed to maintain high productivity. Accordingly, a small addition of microalloying elements vanadium or niobium could be used in combination with Tempcore process to obtain high-strength steel rebars. In this contribution, 0.06 weight percentage of vanadium is added to the Tempcore treated rebars to satisfy ASTM A 706 Standard of Rebar Grade 80 PSI [550 MPa]. In order to decrease the trials in the steel plant floor, thermodynamics equilibrium calculations are predicted by Thermo-Calc, CCT, TTT diagrams are calculated by JMat Pro and the kinetics evolution of the vanadium carbonitrides precipitates are predicted by the computational database Mat Calc. High yield strength and tensile strength are obtained due to the effect of fine dispersions of nanometer-scale vanadium carbonitrides precipitates inspected by transmission electron microscope.
文摘The effect of tramp elements in the steel was intensively studied. It was found that the solubility of tramp elements decreased as the temperature decreased under normal cooling conditions. The tramp elements (Cu, Pb, and Sn) diffused toward the grain boundaries, and intermetallic compounds or rich phases which have low melting points were formed, causing reduction in ductility and failure during the bending test. Rebars with Cu content which were left to air cooling after the last step showed drop in elongation, up to 32 %. On contrast, the samples with high per- centage of tramp elements (Cu, Pb, and Sn) in the billet, which were rolled and subjected to Tempcore process, did not show drop in elongation or failure in bending test (especially for rebar with diameter less than 32 mm); however, copper must be less than 0.35 mass% to prevent the precipitation of Cu-rich zones of critical size in 32 mm. When quench- ing was applied, the tramp elements remained in the interstitial supersaturated solid solution positions inside the grains and would not have the chance to diffuse and form precipitates, hindering the copper precipitates from reac- hing the critical size necessary for impairing the properties. This would hinder the occurrence of the harmful effect of the tramp elements on the elongation or the hot shortness after rolling.