Studying the response to warming of hydrological systems in Chin's temperate glacier region is essential in order to provide information required for sustainable develop- ment. The results indicated the warming clima...Studying the response to warming of hydrological systems in Chin's temperate glacier region is essential in order to provide information required for sustainable develop- ment. The results indicated the warming climate has had an impact on the hydrological cycle. As the glacier area subject to melting has increased and the ablation seasor has become longer, the contribution of meltwater to annual river discharge has increased. The earlier onset of ablation at higher elevation glaciers has resulted in the period of minimum discharge occurring earlier in the year. Seasonal runoff variations are dominated by snow and glacier melt, and an increase of meltwater has resulted in changes of the annual water cycle in the Lijiang Basin and Hailuogou Basin. The increase amplitude of runoff in the downstream re- gion of the glacial area is much stronger than that of precipitation, resulting from the promi- nent increase of meltwater from glacier region in two basins. Continued observations in the glacierized basins should be undertaken in order to monitor changes, to reveal the relation- ships between climate, glaciers, hydrology and water supplies, and to assist in maintaining sustainable regional development.展开更多
基金CAS Western Light Program, No.O828Al1001 China Postdoctoral Science Foundation, No.2012M510219+6 种基金 National Natural Science Foundation of China, No.91025002 No.30970492 No.KZZD-EW-04-05 National Natural Science Foundation of China, No.llJ0930003 The CAS Special Grant for Postgraduate Research, Innovation and Practice The Foundation from the State Key Laboratory of Cryosphere Science The Founda- tion from Lijiang City Government
文摘Studying the response to warming of hydrological systems in Chin's temperate glacier region is essential in order to provide information required for sustainable develop- ment. The results indicated the warming climate has had an impact on the hydrological cycle. As the glacier area subject to melting has increased and the ablation seasor has become longer, the contribution of meltwater to annual river discharge has increased. The earlier onset of ablation at higher elevation glaciers has resulted in the period of minimum discharge occurring earlier in the year. Seasonal runoff variations are dominated by snow and glacier melt, and an increase of meltwater has resulted in changes of the annual water cycle in the Lijiang Basin and Hailuogou Basin. The increase amplitude of runoff in the downstream re- gion of the glacial area is much stronger than that of precipitation, resulting from the promi- nent increase of meltwater from glacier region in two basins. Continued observations in the glacierized basins should be undertaken in order to monitor changes, to reveal the relation- ships between climate, glaciers, hydrology and water supplies, and to assist in maintaining sustainable regional development.