This paper deals with the application of decouple Control theory to temperature and humidi-ty control in air-conditioning system. The decouple control algorithm for bivariable systems isderived applicablly for air-con...This paper deals with the application of decouple Control theory to temperature and humidi-ty control in air-conditioning system. The decouple control algorithm for bivariable systems isderived applicablly for air-conditioning system. The algorithm is used to design a temperatureand humidity computer control system for the preprocessing chamber of air-conditioning testequipment. The results of the real-time control experiments indicate that the decouple controlalgorithm is feasible, the control quality is improved and high control precision is achieved.展开更多
Analyzing observations of wintertime air temperature in both indoor and outdoor surroundings in Kunming, a city lying in low latitudes, characteristics of temperature and humidity have been studied for the interior of...Analyzing observations of wintertime air temperature in both indoor and outdoor surroundings in Kunming, a city lying in low latitudes, characteristics of temperature and humidity have been studied for the interior of rooms facing north-south under different weather conditions. Significant warming effect has been identified in terms of lowest and daily-mean indoor temperature in the area of Kunming. The heating amplitude ranges from 7.7C to 10.0C and from 4.6C to 5.8C for the interior part of rooms facing the south and from 4.6C to 7.0C and from 1.3C to 4.4C for the interior part of rooms facing the north, respectively for the two elements. The highest air temperature is higher indoor than outdoor for rooms facing the south, but otherwise is usually true for rooms facing the north. Additional findings point out that buildings not only help maintain relatively warm indoor temperature but delay its variation. The diurnal cycle of temperature indoor is smaller and ranges by 40% ~ 48% for south-facing rooms, and by 20% ~ 30% for north-facing rooms, than outdoor, and the highest temperature is about 2 hours late inside the room than outside. It shows how inertly indoor temperature varies. The work also finds that relative humidity is less indoor in southward rooms than in northward ones and difference is the largest on fine days but the smallest when it is overcast. For the diurnal variation, the indoor relative humidity is large at nighttime with small amplitude but small during daytime with large amplitude. The above-presented results can be served as scientific foundation for more research on climate in low-latitude cities and rational design of urban architectures.展开更多
Aiming at the actual demand for monitoring environmental information,a wireless sensing system for temperature and relative humidity(RH)monitoring based on radio frequency(RF)technology and mobile network was designed...Aiming at the actual demand for monitoring environmental information,a wireless sensing system for temperature and relative humidity(RH)monitoring based on radio frequency(RF)technology and mobile network was designed.This paper introduces the architecture of the system.The system uses AVR micro controller unit(MCU),KYL-1020U RF module and SHT71 to complete real-time temperature and humidity monitoring,and uses SIM900A module to realize remote alarming and monitoring with short message system(SMS)through global system for mobile communication(GSM).Experimental results show that the designed system has good stability of measurement and real-time performance,and it can be used in some small temperature and humidity monitoring occasions.展开更多
Polymer Electrolyte Fuel Cell(PEFC)is desired to be operated at temperature around 90℃ for stationary applications during the period from 2020 to 2025 in Japan.It can be expected thinner polymer electrolyte membrane(...Polymer Electrolyte Fuel Cell(PEFC)is desired to be operated at temperature around 90℃ for stationary applications during the period from 2020 to 2025 in Japan.It can be expected thinner polymer electrolyte membrane(PEM)and gas diffusion layer(GDL)would promote the power generation performance of PEFC at this temperature.The aim of this study is to understand the impact of thickness of PEM and GDL on the temperature profile of interface between PEM and catalyst layer at the cathode(i.e.,the reaction surface)in a single PEFC with an initial operation temperature(Tini).An 1D multi-plate heat transfer model based on temperature data of separator measured using thermograph in power generation process was developed to evaluate temperature of the reaction surface(Treact).This study investigated the effect of Tini,flow rate and relative humidity of supply gas on Treact distribution.The study finds that when using thin GDL,the even distribution of Treact – Tini is obtained irrespective of thickness of PEM,Tini and relative humidity conditions.Treact – Tini using Nafion 115 is higher than the other thin PEMs irrespective of Tini and relative humidity conditions.It can be concluded that the even temperature distribution could be achieved by using thin PEM and GDL.展开更多
The processes of heat and humidity transfer between air and water are what to be studied mainly in the paper, we put forward some main factors which influence the processes of heat and humidity transfer in the air was...The processes of heat and humidity transfer between air and water are what to be studied mainly in the paper, we put forward some main factors which influence the processes of heat and humidity transfer in the air washer. We come to the conclusion that we can change these main factors to achieve different heat and humidity transfer processes and decide processes of heat and humidity transfer of air and water with the initial temperature of spraying water in the air washer. All these results can make things convenient for the air conditioning management.展开更多
Polymer Electrolyte Fuel Cell(PEFC)is required to be operated at temperature at 100℃ for fuel cell vehicle applications during the period from 2020 to 2025 in Japan.It is expected that micro porous layer(MPL)and thin...Polymer Electrolyte Fuel Cell(PEFC)is required to be operated at temperature at 100℃ for fuel cell vehicle applications during the period from 2020 to 2025 in Japan.It is expected that micro porous layer(MPL)and thinner polymer electrolyte membrane(PEM)would enhance the power generation performance of PEFC at this temperature.The key objective of this study is to analyse the impact of MPL and thickness of PEM on the temperature distributions of interface between the PEM and catalyst layer at the cathode(i.e.,the reaction surface)in a single PEFC.A 1D multi-plate heat transfer model,considering vapor transfer,which is based on temperature data of separator measured using thermograph in power generation process.It is developed to evaluate temperature at the reaction surface.This study is investigated the effect of flow rate and relative humidity of supply gases on temperature distribution on reaction surface.The study reveals that the impact of flow rate of supply gas on temperature distribution on reaction surface is smaller with and without MPL.It is observed that the even temperature distribution on reaction surface as well as higher power generation performance can be obtained with MPL irrespective of thickness of PEM and relative humidity conditions.展开更多
直流式整流罩空调在夏季高温、高湿、高盐雾环境中,存在制冷量有台阶、热工影响因素多、受环境影响大、响应特性差等问题,对此展开分析,提出了比例积分微分(Proportion-al Integral Derivative,PID)控制、温湿度解耦、制冷量台阶处理等...直流式整流罩空调在夏季高温、高湿、高盐雾环境中,存在制冷量有台阶、热工影响因素多、受环境影响大、响应特性差等问题,对此展开分析,提出了比例积分微分(Proportion-al Integral Derivative,PID)控制、温湿度解耦、制冷量台阶处理等空调控制策略,并对其进行试验验证,结果表明该措施有效。采用该控制策略对航天器进行环境保障,满足航天器对火箭整流罩内的温湿度要求。展开更多
文摘This paper deals with the application of decouple Control theory to temperature and humidi-ty control in air-conditioning system. The decouple control algorithm for bivariable systems isderived applicablly for air-conditioning system. The algorithm is used to design a temperatureand humidity computer control system for the preprocessing chamber of air-conditioning testequipment. The results of the real-time control experiments indicate that the decouple controlalgorithm is feasible, the control quality is improved and high control precision is achieved.
文摘Analyzing observations of wintertime air temperature in both indoor and outdoor surroundings in Kunming, a city lying in low latitudes, characteristics of temperature and humidity have been studied for the interior of rooms facing north-south under different weather conditions. Significant warming effect has been identified in terms of lowest and daily-mean indoor temperature in the area of Kunming. The heating amplitude ranges from 7.7C to 10.0C and from 4.6C to 5.8C for the interior part of rooms facing the south and from 4.6C to 7.0C and from 1.3C to 4.4C for the interior part of rooms facing the north, respectively for the two elements. The highest air temperature is higher indoor than outdoor for rooms facing the south, but otherwise is usually true for rooms facing the north. Additional findings point out that buildings not only help maintain relatively warm indoor temperature but delay its variation. The diurnal cycle of temperature indoor is smaller and ranges by 40% ~ 48% for south-facing rooms, and by 20% ~ 30% for north-facing rooms, than outdoor, and the highest temperature is about 2 hours late inside the room than outside. It shows how inertly indoor temperature varies. The work also finds that relative humidity is less indoor in southward rooms than in northward ones and difference is the largest on fine days but the smallest when it is overcast. For the diurnal variation, the indoor relative humidity is large at nighttime with small amplitude but small during daytime with large amplitude. The above-presented results can be served as scientific foundation for more research on climate in low-latitude cities and rational design of urban architectures.
文摘Aiming at the actual demand for monitoring environmental information,a wireless sensing system for temperature and relative humidity(RH)monitoring based on radio frequency(RF)technology and mobile network was designed.This paper introduces the architecture of the system.The system uses AVR micro controller unit(MCU),KYL-1020U RF module and SHT71 to complete real-time temperature and humidity monitoring,and uses SIM900A module to realize remote alarming and monitoring with short message system(SMS)through global system for mobile communication(GSM).Experimental results show that the designed system has good stability of measurement and real-time performance,and it can be used in some small temperature and humidity monitoring occasions.
文摘Polymer Electrolyte Fuel Cell(PEFC)is desired to be operated at temperature around 90℃ for stationary applications during the period from 2020 to 2025 in Japan.It can be expected thinner polymer electrolyte membrane(PEM)and gas diffusion layer(GDL)would promote the power generation performance of PEFC at this temperature.The aim of this study is to understand the impact of thickness of PEM and GDL on the temperature profile of interface between PEM and catalyst layer at the cathode(i.e.,the reaction surface)in a single PEFC with an initial operation temperature(Tini).An 1D multi-plate heat transfer model based on temperature data of separator measured using thermograph in power generation process was developed to evaluate temperature of the reaction surface(Treact).This study investigated the effect of Tini,flow rate and relative humidity of supply gas on Treact distribution.The study finds that when using thin GDL,the even distribution of Treact – Tini is obtained irrespective of thickness of PEM,Tini and relative humidity conditions.Treact – Tini using Nafion 115 is higher than the other thin PEMs irrespective of Tini and relative humidity conditions.It can be concluded that the even temperature distribution could be achieved by using thin PEM and GDL.
文摘The processes of heat and humidity transfer between air and water are what to be studied mainly in the paper, we put forward some main factors which influence the processes of heat and humidity transfer in the air washer. We come to the conclusion that we can change these main factors to achieve different heat and humidity transfer processes and decide processes of heat and humidity transfer of air and water with the initial temperature of spraying water in the air washer. All these results can make things convenient for the air conditioning management.
文摘Polymer Electrolyte Fuel Cell(PEFC)is required to be operated at temperature at 100℃ for fuel cell vehicle applications during the period from 2020 to 2025 in Japan.It is expected that micro porous layer(MPL)and thinner polymer electrolyte membrane(PEM)would enhance the power generation performance of PEFC at this temperature.The key objective of this study is to analyse the impact of MPL and thickness of PEM on the temperature distributions of interface between the PEM and catalyst layer at the cathode(i.e.,the reaction surface)in a single PEFC.A 1D multi-plate heat transfer model,considering vapor transfer,which is based on temperature data of separator measured using thermograph in power generation process.It is developed to evaluate temperature at the reaction surface.This study is investigated the effect of flow rate and relative humidity of supply gases on temperature distribution on reaction surface.The study reveals that the impact of flow rate of supply gas on temperature distribution on reaction surface is smaller with and without MPL.It is observed that the even temperature distribution on reaction surface as well as higher power generation performance can be obtained with MPL irrespective of thickness of PEM and relative humidity conditions.
文摘直流式整流罩空调在夏季高温、高湿、高盐雾环境中,存在制冷量有台阶、热工影响因素多、受环境影响大、响应特性差等问题,对此展开分析,提出了比例积分微分(Proportion-al Integral Derivative,PID)控制、温湿度解耦、制冷量台阶处理等空调控制策略,并对其进行试验验证,结果表明该措施有效。采用该控制策略对航天器进行环境保障,满足航天器对火箭整流罩内的温湿度要求。