期刊文献+
共找到3,748篇文章
< 1 2 188 >
每页显示 20 50 100
Finite-time Stability of Heating Furnace Temperature Control System 被引量:1
1
作者 GUANG Xiaona LIU Xiaohua 《Instrumentation》 2020年第2期51-59,共9页
A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable conditio... A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable condition of the heating furnace temperature control system is given.The temperature of the heating furnace is directed by the finite-time stabilization controller to make it stable in finite time.And the quality and quantity of slabs is improved.The simulation example is presented to illustrate the applicability of the developed results. 展开更多
关键词 Finite-time Stability heating furnace temperature control system Power Integral control Lyapunov Function
下载PDF
Parameters Optimization of the Heating Furnace Control Systems Based on BP Neural Network Improved by Genetic Algorithm 被引量:4
2
作者 Qiong Wang Xiaokan Wang 《Journal on Internet of Things》 2020年第2期75-80,共6页
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ... The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace. 展开更多
关键词 Genetic algorithm parameter optimization PID control BP neural network heating furnace
下载PDF
Temperature Intelligent Control System of Large-Scale Standing Quench Furnace 被引量:1
3
作者 贺建军 喻寿益 《Journal of Electronic Science and Technology of China》 2005年第1期60-63,共4页
Considering some characteristics of large-scale standing quench furnace, such as great heat inertia, evident time lag, strong coupling influence, hard to establish exact mathematical models of plant and etc, an artifi... Considering some characteristics of large-scale standing quench furnace, such as great heat inertia, evident time lag, strong coupling influence, hard to establish exact mathematical models of plant and etc, an artificial intelligent fuzzy control algorithm is put forward in this paper. Through adjusting the on-off ratio of electric heating elements, the temperature in furnace is controlled accurately. This paper describes structure and qualities of the large-scale standing quench furnace briefly, introduces constitution of control system, and expounds principle and implementation of intelligent control algorithm. The applied results prove that the intelligent control system can completely satisfy the technological requirements. Namely, it can realize fast increasing temperature with a little overshoot, exact holding temperature, and well-distributed temperature in quench furnace. It has raised the output and quality of aluminum material, and brought the outstanding economic and social benefits. 展开更多
关键词 quench furnace temperature control system artificial intelligent fuzzy control on-off ratio
下载PDF
Temperature control for thermal treatment of aluminum alloy in a large-scale vertical quench furnace 被引量:2
4
作者 沈玲 贺建军 +1 位作者 喻寿益 桂卫华 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1719-1728,共10页
The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature cont... The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time. 展开更多
关键词 large-scale vertical quench furnace temperature calibration thermal dynamic model decoupling control
下载PDF
Stability Analysis of Network Controlled Temperature Control System with Additive Delays
5
作者 V.Venkatachalam D.Prabhakaran 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第3期321-334,共14页
This paper presents,using Lyapunov-Krasovskii functional technique combined with reciprocal convex lemma is considered for a networked control temperature control system with additive time-varying-delays.In the stabil... This paper presents,using Lyapunov-Krasovskii functional technique combined with reciprocal convex lemma is considered for a networked control temperature control system with additive time-varying-delays.In the stability analysis,a new LK functional is assumed,and take the time-derivative of the(LK)functional,using reciprocal convex combination technique was employed to obtain less conservative stability criteria.Finally,the proposed stability analysis culminates into a stability criterion in the LMI(linear matrix inequalities)framework.The results obtained are in accordance with the theoretically obtained in the temperature control system and they are closer to the standard benchmark temperature-control system. 展开更多
关键词 DELAY-DEPENDENT stability time-varying ADDITIVE DELAYS temperature control heat EXCHANGER LYAPUNOV-KRASOVSKII functional linear matrix inequality reciprocal convex LEMMA
下载PDF
Recent Advances in Research of the Distributed Parameters Control System with Moving Boundary 被引量:9
6
作者 Yang, Xueshi Yu, Jingyuan Zhu, Guangtian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1993年第3期47-61,共15页
This paper presents a brief summary of the three development stages of investigation on the transpiration cooling and its control for aircraft, missiles and electromagnetic gun, then the control problem of the distrib... This paper presents a brief summary of the three development stages of investigation on the transpiration cooling and its control for aircraft, missiles and electromagnetic gun, then the control problem of the distributed parameters system with a moving boundary is derived. It introduces the mathematical model of the transpiration cooling control, its control characteristics, and the present situation of the experimental and theoretical study on this problem. This paper also describes the main study results and the existing problems. The prospective application is also reported. The major references in every developing stage are listed systematically for further study. 展开更多
关键词 Ablation Boundary layer flow Boundary layers COOLING EXPERIMENTS Flow control Heat transfer Mathematical models temperature control
下载PDF
Hybrid intelligent control of combustion process for ore-roasting furnace 被引量:1
7
作者 Aijun YAN Tianyou CHAI +1 位作者 FenghuaWU Pu WANG 《控制理论与应用(英文版)》 EI 2008年第1期80-85,共6页
Because of its synthetic and complex characteristics, the combustion process of the shaft ore-roasting furnace is very difficult to control stably. A hybrid intelligent control approach is developed which consists of ... Because of its synthetic and complex characteristics, the combustion process of the shaft ore-roasting furnace is very difficult to control stably. A hybrid intelligent control approach is developed which consists of two systems: one is a cascade fuzzy control system with a temperature soft-sensor, and the other is a ratio control system for air flow with a compensation model for heating gas flow and air-fuel ratio. This approach combined intelligent control, soft-sensing and fault diagnosis with conventional control. It can adjust both the heating gas flow and the air-fuel ratio in real time. By this way, the difficulty of online measurement of the furnace temperature is solved, the fault ratios during combustion process is decreased, the steady control of the furnace temperature is achieved, and the gas consumption is reduced. The successful application in shaft furnaces of a mineral processing plant in China indicates its effectiveness. 展开更多
关键词 furnace temperature Intelligent control Soft-sensing Fault diagnosis Shaft furnace
下载PDF
Temperature Compensation Algorithm for Hydraulic System Pressure Control 被引量:1
8
作者 Huien Gao Liang Chu +1 位作者 Jianhua Guo Dianbo Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期556-563,共8页
In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductanc... In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductance and resistance.The coil resistance is influenced greatly by the ambient temperature and the self-heating of coil,which affects the control precision of coil current.First,considering the heat dissipation mode of coil,the coil temperature model is established from the perspective of heat conduction,and a temperature compensation algorithm for hydraulic system pressure control is put forward.Then the hardware-in-the-loop testbed is set up by using the dSPACE platform,carrying out wheel cylinder pressurization tests with inlet valve fully opened at-40℃ and 20℃,and testing the actual pressure of wheel cylinder with the target pressures at-40℃ and 6 000 kPa/s(pressurization rate).The results show that the pressure control temperature compensation algorithm proposed in this paper accurately corrects the influence of resistance temperature drift on the response accuracy of wheel cylinder pressure.After the correction,the pressure difference is less than 500 kPa,which can meet the control accuracy requirements of solenoid valve,enriching the linear control characteristic of solenoid valve. 展开更多
关键词 braking energy recovery heat conduction temperature compensation linear pressure control rapid control prototype
下载PDF
Identification and PID Control for a Class of Delay Fractional-order Systems 被引量:6
9
作者 Zhuoyun Nie Qingguo Wang +1 位作者 Ruijuan Liu Yonghong Lan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期463-476,共14页
In this paper, a new model identification method is developed for a class of delay fractional-order system based on the process step response. Four characteristic functions are defined to characterize the features of ... In this paper, a new model identification method is developed for a class of delay fractional-order system based on the process step response. Four characteristic functions are defined to characterize the features of the normalized fractional-order model. Based on the time scaling technology, two identification schemes are proposed for parameters U+02BC estimation. The scheme one utilizes three exact points on the step response of the process to calculate model parameters directly. The other scheme employs optimal searching method to adjust the fractional order for the best model identification. The proposed two identification schemes are both applicable to any stable complex process, such as higher-order, under-damped U+002F over-damped, and minimum-phase U+002F nonminimum-phase processes. Furthermore, an optimal PID tuning method is proposed for the delay fractional-order systems. The requirements on the stability margins and the negative feedback are cast as real part constraints U+0028 RPC U+0029 and imaginary part constraints U+0028 IPC U+0029. The constraints are implemented by trigonometric inequalities on the phase variable, and the optimal PID controller is obtained by the minimization of the integral of time absolute error U+0028 ITAE U+0029 index. Identification and control of a Titanium billet heating process is given for the illustration. © 2014 Chinese Association of Automation. 展开更多
关键词 ALGEBRA Billets (metal bars) Delay control systems Identification (control systems) Proportional control systems Step response Three term control systems Time delay Titanium
下载PDF
Modeling and Control Strategy of Built-in Skin Effect Electric Tracing System
10
作者 Li Ding Jiasheng Zhang Hongchang Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第11期213-229,共17页
In order to ensure the safety of fluid flow in deep-water submarine pipelines,a safe and energy-saving built-in skin effect electric heat tracing technology was adopted as the thermal management strategy.The magnetic ... In order to ensure the safety of fluid flow in deep-water submarine pipelines,a safe and energy-saving built-in skin effect electric heat tracing technology was adopted as the thermal management strategy.The magnetic field distribution of built-in skin effect heating system is analyzed based on the mechanism of built-in skin effect heating system,so as to obtain the equivalent circuit model of built-in skin effect electric heating system.Meanwhile,heating power is introduced as an intermediate variable to establish the relationship between power supply frequency and built-in skin effect heating temperature.Aiming at the skin effect electric heating system,an Active Disturbance Rejection Control(ADRC)method is proposed macroscopically based on Hammerstein model.Firstly,the parameters of Hammerstein model are identified and optimized using the auxiliary model and standard particle swarm optimization algorithm.Then,the ADRC controller of linear link is designed,and the required heating temperature is used to solve the intermediate variable heating power.Finally,inversion calculation is applied in the nonlinear link to solve the required power frequency,so as to achieve the purpose of efficient heating and verify the feasibility and effectiveness of control strategy through simulation. 展开更多
关键词 BUILT-IN ELECTRIC heat TRACING system HAMMERSTEIN model ADRC temperature control.
下载PDF
The Application and Simulation of Fuzzy Adaptive PID in Household Heating Metering System 被引量:1
11
作者 ZHAO Yawei LIU Ying 《沈阳理工大学学报》 CAS 2015年第1期82-86,94,共6页
After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the ... After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the characteristics of the temperature control w ith big inertia,pure time-delay and degeneration,a fuzzy adaptive PID controller is designed w ith the advantages of the fuzzy control and PID algorithm,and the simulation model is established according to the characteristics of heating metering system.Simulation results show that the fuzzy adaptive PID controller proposed has small overshoot,short oscillation cycle,high precision and strong anti-jamming capability in comparison w ith conventional PID controller,w hich could meet the requirement of the dynamic and steady-state performance of the heating process. 展开更多
关键词 加热系统 控制器 热计量 仿真模型
下载PDF
Precise Control of Temperature Rising Speed of Wafer during Rapid Thermal Processing
12
作者 Shigeki Hirasawa Tsuyoshi Kawanami Katsuaki Shirai Tetsuya Urimoto Naoki Morimoto Atsushi Fujiwara Sadanori Toda 《Journal of Mechanics Engineering and Automation》 2014年第5期359-364,共6页
In rapid thermal processing of a semiconductor wafer, it is important to keep a given temperature rising speed of the wafer during the temperature rising process. We made an experimental apparatus to measure the tempe... In rapid thermal processing of a semiconductor wafer, it is important to keep a given temperature rising speed of the wafer during the temperature rising process. We made an experimental apparatus to measure the temperature rising speed of a ceramic ball of 2 mm in diameter heated with four halogen lamp heaters. The heating rate of the halogen lamp heaters was controlled by computer to keep a given temperature rising speed of 50 ℃/s with a controlling time interval of 0.1 s. We examined the effect of various heating control methods on the error of the temperature rising speed of the ceramic ball. We found that a combined method of control with prepared correlation and PID (proportional integral derivative) control is a good method to decrease the error of the temperature rising speed. The average error of the temperature rising speed is 0.5 ℃/s, and the repetition error is almost zero for the temperature rising speed of 50 ℃/s from 330 ℃ to 370 ℃. We also measured the effects of artificial control delay time and measuring error of the monitoring temperature on the error of the temperature rising speed. 展开更多
关键词 Electronic equipment manufacturing rapid heating heat treatment temperature control PID control.
下载PDF
Visco-elastic-plastic model of deep underground rock affected by temperature and humidity 被引量:9
13
作者 GAO, Yanan GAO, Feng +1 位作者 ZHANG, Zhizhen ZHANG, Tao 《Mining Science and Technology》 EI CAS 2010年第2期183-187,共5页
As the depth of exploitation increases,studies on constitutive models of rock affected by temperature and humidity become very important.Based on the Nishihara model,a visco-elastic-plastic rock model was established ... As the depth of exploitation increases,studies on constitutive models of rock affected by temperature and humidity become very important.Based on the Nishihara model,a visco-elastic-plastic rock model was established by using the coefficients of thermal and humidity expansion,thermal viscosity attenuation,humid viscosity attenuation and acceleration rheology components.We used the definition of a controlled heat circle to explain the model.The results show that the behavior of rock,affected by temperature and humidity,is stable as a function of time when the stress is lower than the first yield stress σS1;the creep rate will increase due to the effect of temperature and humidity when the stress is greater than or equal to σS1;the creep rate will accelerate at an increasing rate when the stress is greater than or equal to the second yield stress σS2,which results in a failure of the roadway.The model derived in this study can completely describe visco-elastic-plastic characteristics and reflects the three stages of rock creep. 展开更多
关键词 temperature humidity CREEP controlled heat circle
下载PDF
Zonal method solution of radiative heat transfer in a one-dimensional long roller-hearth furnace in CSP 被引量:4
14
作者 Wenfei Wu Yanhui Feng Xinxin Zhang 《Journal of University of Science and Technology Beijing》 CSCD 2007年第4期307-311,共5页
A radiative heat transfer mathematical model for a one-dimensional long furnace was set up in a through-type roller-hearth furnace (TTRHF) in compact strip production (CSP). To accurately predict the heat exchange... A radiative heat transfer mathematical model for a one-dimensional long furnace was set up in a through-type roller-hearth furnace (TTRHF) in compact strip production (CSP). To accurately predict the heat exchange in the furnace, modeling of the complex gas energy-balance equation in volume zones was considered, and the heat transfer model of heating slabs and wall lines was coupled with the radiative heat transfer model to identify the surface zonal temperature. With numerical simulation, the temperature fields of gas, slabs, and wall lines in the furnace under one typical working condition were carefully accounted and analyzed. The fundamental theory for analyzing the thermal process in TI'RI-IF was provided. 展开更多
关键词 zonal method roller-hearth furnace radiative heat transfer mathematical model temperature fields
下载PDF
Analysis and optimization of heat loss for water-cooled furnace roller 被引量:1
15
作者 李勇 李家栋 +3 位作者 刘宇佳 侯帅 王昭东 王国栋 《Journal of Central South University》 SCIE EI CAS 2013年第8期2158-2164,共7页
A heat transfer model of furnace roller cooling process was established based on analysis of furnace roller's structure. The complicated model was solved with iteration planning algorithm based on Newton search. The ... A heat transfer model of furnace roller cooling process was established based on analysis of furnace roller's structure. The complicated model was solved with iteration planning algorithm based on Newton search. The model is proved logical and credible by comparing calculated results and measured data. Then, the relationship between water flow velocity, inlet water temperature, furnace temperature and roller cross section temperature, outlet water temperature, water temperature rise, cooling water heat absorption was studied. The conclusions and recommendations are mainly as follows: l) Cooling water temperature rise decreases with the increase of water flow velocity, but it has small relationship with inlet water temperature; 2) In order to get little water scale, inlet water temperature should be controlled below 30 ℃. 3) The cooling water flow velocity should be greater than critical velocity. The critical velocity is 0.07 m/s and water flow velocity should be controlled within 0.4-0.8 m/s. Within this velocity range, water cooling efficiency is high and water temperature rise is little. If cooling water velocity increases again, heat loss will increase, leading to energy wasting. 展开更多
关键词 furnace roller water-cooled furnace heat loss OPTIMIZATION control
下载PDF
Effect of perceived control on human thermal comfort in heated environments 被引量:1
16
作者 LIU Chang WANG Zhao-jun +3 位作者 SU Xiao-wen YANG Yu-xin ZHOU Fan-zhuo XU Run-pu 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2346-2356,共11页
To study the effects of perceived control on human thermal sensation and thermal comfort in heated environments,a psychological experiment was conducted.In total,24 subjects participated in an experiment.The experimen... To study the effects of perceived control on human thermal sensation and thermal comfort in heated environments,a psychological experiment was conducted.In total,24 subjects participated in an experiment.The experiment consisted of two cases in which the indoor temperature was set at 18℃ with different cold radiation temperatures.The experiment lasted for 120 min and was divided into three phases,adaptation,without perceived control and perceived control.In the second phase,the subjects were told in advance that the indoor temperature could not be adjusted.In the third phase,subjects were told that they could adjust the indoor temperature to meet their own thermal expectations,but the indoor temperature could not actually be changed.The results showed that the effect of perceived control on thermal sensation was related to the thermal expectation.For people with strong expectations for a neutral environment,perceived control improved their thermal sensation by satisfying their thermal expectations.For people with low thermal expectations,perceived control reduced their thermal tolerance to the environment,eventually leading to thermal discomfort.These new findings provide more supports for the importance of psychological effects and a reference for the personal control of heating temperatures. 展开更多
关键词 perceived control thermal expectation thermal sensation thermal comfort heating temperature
下载PDF
Study of energy-efficient heat resistance and cooling technology for high temperature working face with multiple heat sources in deep mine
17
作者 Hongbin Zhao Shihao Tu +2 位作者 Xun Liu Jieyang Ma Long Tang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第3期92-107,共16页
In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations... In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations of environmental temperature through field measurements,we selected a high-temperature working face in a deep mine as our engineering background.To enhance the heat damage control cability of the working face and minimize unnecessary cooling capac-ity loss,we introduced the multi-dimensional heat hazard prevention and control method called"Heat source barrier and cooling equipment".First,we utilize shotcrete and liquid nitrogen injection to eliminate the heat source and implemented pressure equalization ventilation to disrupt the heat transfer path,thereby creating a heat barrier.Second,we establish divi-sional prediction models for airflow temperature based on the variation patterns obtained through numerical simulation.Third,we devise the location and dynamic control strategy for the cooling equipment based on the prediction models.The results of field application show that the heat resistance and cooling linkage method comply with the safety requirement throughout the entire mining cycle while effectively reducing energy consumption.The ambient temperature is maintained below 30℃,resulting in the energy saving of 10%during the high-temperature period and over 50%during the low-temperature period.These findings serve as a valuable reference for managing heat damage in high-temperature working faces. 展开更多
关键词 High-temperature working face Heat source barrier Multiple heat source effect Airflow temperature prediction Dynamic control strategy
下载PDF
Temperature and Humidity Control in Greenhouses in Desert Areas
18
作者 Shigeki Hirasawa Mai Nakatsuka +2 位作者 Kunio Masui Tsuyoshi Kawanami Katsuaki Shirai 《Agricultural Sciences》 2014年第13期1261-1268,共8页
Water consumption can be reduced by using a greenhouse for agriculture in desert areas. We analyzed the effect of control of ventilation, sprinkler water, and solar radiation?shielding on changes of temperature and hu... Water consumption can be reduced by using a greenhouse for agriculture in desert areas. We analyzed the effect of control of ventilation, sprinkler water, and solar radiation?shielding on changes of temperature and humidity in a greenhouse under various desert area conditions. We calculated the changes in temperature and humidity in a greenhouse for a whole day in four seasons, and the calculation results of water consumption with and without a greenhouse were compared. When ventilation, shielding, and sprinkler water were controlled under suitable conditions to grow orchids in a desert area, water consumption in July was only 7% of that without a greenhouse. 展开更多
关键词 temperature control Humidity Ventilation SPRINKLER Water HEAT TRANSFER GREENHOUSE DESERT
下载PDF
Study on Model Predictive Control to Minimize Movements in Positions Due to Thermal Expansion of Plate with Varying Generation of Heat
19
作者 Shigeki Hirasawa Ryosuke Wakiya Yuichi Hashikawa Tsuyoshi Kawanami Katsuaki Shirai 《Journal of Mechanics Engineering and Automation》 2014年第10期763-769,共7页
Precise temperature control to decrease movements in positions due to thermal expansion of work pieces is required in the manufacturing processes to achieve nanometer-order accuracy. We analytically examined the effec... Precise temperature control to decrease movements in positions due to thermal expansion of work pieces is required in the manufacturing processes to achieve nanometer-order accuracy. We analytically examined the effect of a method of minimizing movements in positions on a plate with varying generation of noise-heat. Control by monitoring temperature changes caused larger movements in positions than that without control because maximum change in temperature occurred at non-monitoring positions. The best method of minimizing movements in positions due to thermal expansion of a plate with varying generation of noise-heat was model predictive control by the monitoring movements and distributed temperature changes in the control heater according to the effects of the generation of noise-heat. The maximum movement in positions was 6 nm, which was 1/4 times of that without control. 展开更多
关键词 Precise temperature control heat transfer thermal expansion process control model predictive control.
下载PDF
Development of a Novel Oven-Furnace
20
作者 Olaniyi Gladius Babatunde Rufus Sola Fayose +9 位作者 Ayodele Abeeb Daniyan Theresa Chikwuo Ezenwafor Ebenezer Olubanji Oniya Nathaniel O. Ajayi Kunle Michael Oluwasegun Akintoye Oni Adedeji Akintunde Ajenifuja Arinola Gift Akinseloyin Adelana Razak Adetunji Samuel Oloruntoba Olugbenga Olusunle 《Journal of Minerals and Materials Characterization and Engineering》 2017年第2期62-73,共12页
This research work is focused on the design and fabrication of Novel Oven-Furnace, using locally sourced materials for the purpose of carrying out drying and thermochemical treatments in accordance to the Internationa... This research work is focused on the design and fabrication of Novel Oven-Furnace, using locally sourced materials for the purpose of carrying out drying and thermochemical treatments in accordance to the International Electric Equipment (IEE) regulations. Working drawings were produced, and mild steel sheet was used for the construction of the casing, while other materials for the construction were selected based on functions and properties of the materials, cost considerations and ease of fabrication into component parts. The design closely revealed the parameters and features of the furnace, but the control system was designed to function systematically as Oven and Furnace. Testing was carried out to evaluate the performance of the Oven-Furnace. From the result obtained, it was observed that the Oven-Furnace has fast heating rate which is comparable to rates of conventional brands of furnaces purchased from Germany or Canada. Unlike the ordinary furnaces, this equipment was designed to operate systematically to maintain constant temperature at any set temperature value. The lower cost of design of the Oven-Furnace coupled with its good heat retaining capacity, long estimated life time, uniform heating rate, controlled atmosphere, safety and ease of maintenance justifies the usage. 展开更多
关键词 Design Oven-furnace CONSTANT temperature DRYING THERMOCHEMICAL Treatment systematic FUNCTION control system
下载PDF
上一页 1 2 188 下一页 到第
使用帮助 返回顶部