Proportional integral plus feedforward (PI+FF) control was proposed for identifying the pipe temperature in hot water heating greenhouse. To get satisfying control result, ten coefficients must be adjusted properly. T...Proportional integral plus feedforward (PI+FF) control was proposed for identifying the pipe temperature in hot water heating greenhouse. To get satisfying control result, ten coefficients must be adjusted properly. The data for training and testing the radial basic function (RBF) neural-networks model of greenhouse were collected in a 1028 m2 multi-span glasshouse. Based on this model, a method of coefficients adjustment is described in this article.展开更多
This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial ...This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial neural network techniques to eliminate the temperature effects on the measured modal frequencies.Then,the measured modal frequencies under various temperatures are normalized to a reference temperature,based on which the auto-associative network is trained to monitor signal damage occurrences by means of neural-network-based novelty detection techniques.The effectiveness of the proposed approach is examined in the Runyang Suspension Bridge using 236-day health monitoring data.The results reveal that the seasonal change of environmental temperature accounts for variations in the measured modal frequencies with averaged variances of 2.0%.And the approach exhibits good capability for detecting the damage-induced 0.1% variance of modal frequencies and it is suitable for online condition monitoring of suspension bridges.展开更多
By eliminating the need for externally applied coolant, internally cooled turning tools offer potential health, safety and cost benefits in many types of machining operation. As coolant flow is completely controlled, ...By eliminating the need for externally applied coolant, internally cooled turning tools offer potential health, safety and cost benefits in many types of machining operation. As coolant flow is completely controlled, tool temperature measurement becomes a practical proposition and can be used to find and maintain the optimum machining conditions. This also requires an intelligent control system in the sense that it must be adaptable to different tool designs, work piece materials and machining conditions. In this paper, artificial neural networks (ANN) are assessed for their suitability to perform such a control function. Experimental data for both conventional tools used for dry machining and internally cooled tools is obtained and used to optimise the design of an ANN. A key finding is that both experimental scatter characteristic of turning and the range of machining conditions for which ANN control is required have a large effect on the optimum ANN design and the amount of data needed for its training. In this investigation, predictions of tool temperature with an optimised ANN were found to be within 5°C of measured values for operating temperatures of up to 258°C. It is therefore concluded that ANN’s are a viable option for in-process control of turning processes using internally controlled tools.展开更多
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean...Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.展开更多
The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining d...The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining device reliability.Existing temperature monitoring methods based on the electro-thermal coupling model have limitations,such as ignoring device interactions and high computational complexity.To address these issues,an analysis of the parameters influencing IGBT failure is conducted,and a temperature monitoring method based on the Macro-Micro Attention Long Short-Term Memory(MMALSTM)recursive neural network is proposed,which takes the forward voltage drop and collector current as features.Compared with the traditional electricalthermal coupling model method,it requires fewer monitoring parameters and eliminates the complex loss calculation and equivalent thermal resistance network establishment process.The simulation model of a highspeed train traction system has been established to explore the accuracy and efficiency of MMALSTM-based prediction methods for IGBT power module junction temperature.The simulation outcomes,which deviate only 3.2% from the theoretical calculation results of the electric-thermal coupling model,confirm the reliability of this approach for predicting the temperature of IGBT power modules.展开更多
Back propagation neural networks are used to retrieve atmospheric temperature profiles from NOAA-16 Advanced Microwave Sounding Unit-A (AMSU-A) measurements over East Asia. The collocated radiosonde observation and AM...Back propagation neural networks are used to retrieve atmospheric temperature profiles from NOAA-16 Advanced Microwave Sounding Unit-A (AMSU-A) measurements over East Asia. The collocated radiosonde observation and AMSU-A data over land in 2002-2003 are used to train the network, and the data over land in 2004 are used to test the network. A comparison with the multi-linear regression method shows that the neural network retrieval method can significantly improve the results in all weather conditions. When an offset of 0.5 K or a noise level of ±0.2 K is added to all channels simultaneously, the increase in the overall root mean square (RMS) error is less than 0.1 K. Furthermore, an experiment is conducted to investigate the effects of the window channels on the retrieval. The results indicate that the brightness temperatures of window channels can provide significantly useful information on the temperature retrieval near the surface. Additionally, the RMS errors of the profiles retrieved with the trained neural network are compared with the errors from the International Advanced TOVS (ATOVS) Processing Package (IAPP). It is shown that the network-based algorithm can provide much better results in the experiment region and comparable results in other regions. It is also noted that the network can yield remarkably better results than IAPP at the low levels and at about the 250-hPa level in summer skies over ocean. Finally, the network-based retrieval algorithm developed herein is applied in retrieving the temperature anomalies of Typhoon Rananim from AMSU-A data.展开更多
By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power pla...By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system.展开更多
On the basis of the data obtained on Gleeble 1500 Thermal Simulator, the predicting models for the relation between stable flow stress during high temperature plastic deformation and deformation strain, strain rate an...On the basis of the data obtained on Gleeble 1500 Thermal Simulator, the predicting models for the relation between stable flow stress during high temperature plastic deformation and deformation strain, strain rate and temperature for 1420 Al Li alloy have been developed with BP artificial neural networks method. The results show that the model on basis of BPNN is practical and it reflects the actual feature of the deforming process. It states that the difference between the actual value and the output of the model is in order of 5%. [展开更多
A soft-measuring approach is presented to measure the flux of liquid zinc with high temperature andcausticity. By constructing mathematical model based on neural networks, weighing the mass of liquid zinc, the fluxof ...A soft-measuring approach is presented to measure the flux of liquid zinc with high temperature andcausticity. By constructing mathematical model based on neural networks, weighing the mass of liquid zinc, the fluxof liquid zinc is acquired indirectly, the measuring on line and flux control are realized. Simulation results and indus-trial practice demonstrate that the relative error between the estimated flux value and practical measured flux value islower than 1.5%, meeting the need of industrial process.展开更多
The temperature characteristics of a silicon microgyroscope are studied, and the temperature compensation method of the silicon microgyroscope is proposed. First, an open-loop circuit is adopted to test the entire mic...The temperature characteristics of a silicon microgyroscope are studied, and the temperature compensation method of the silicon microgyroscope is proposed. First, an open-loop circuit is adopted to test the entire microgyroscope's resonant frequency and quality factor variations over temperature, and the zero bias changing trend over temperature is measured via a closed-loop circuit. Then, in order to alleviate the temperature effects on the performance of the microgyroscope, a kind of temperature compensated method based on the error back propagation(BP)neural network is proposed. By the Matlab simulation, the optimal temperature compensation model based on the BP neural network is well trained after four steps, and the objective error of the microgyroscope's zero bias can achieve 0.001 in full temperature range. By the experiment, the real time operation results of the compensation method demonstrate that the maximum zero bias of the microgyroscope can be decreased from 12.43 to 0.75(°)/s after compensation when the ambient temperature varies from -40 to 80℃, which greatly improves the zero bias stability performance of the microgyroscope.展开更多
Power uprates pose a threat to electrical generators due to possible parasite effects that can develop potential failure sources with catastrophic consequences in most cases. In that sense, it is important to pay clos...Power uprates pose a threat to electrical generators due to possible parasite effects that can develop potential failure sources with catastrophic consequences in most cases. In that sense, it is important to pay close attention to overheating, which results from excessive system losses and cooling system inefficiency. The end region of a stator is the most sensitive part to overheating. The calculation of magnetic fields, the evaluation of eddy-current losses and the determination of loss-derived temperature increases, are challenging problems requiring the use of simulation methods. The most usual methodology is the finite element method, or linear regression. In order to address this methodology, a calculation method was developed to determine temperature increases in the last stator package. The mathematical model developed was based on an artificial intelligence technique, more specifically neural networks. The model was successfully applied to estimate temperatures associated to 108% power and used to extrapolate temperature values for a power uprate to 113.48%. This last scenario was also useful to test extrapolation accuracy. The method is applied to determine core-end temperature when power is uprated to 117.78%. At that point, the temperature value will be compared to with the values obtained using finite elements method and multivariate regression.展开更多
Artificial neural network has unique advantages for massively parallel processing, distributed storage capacity and self-learning ability. The paper mainly constructs neural network identifier and neural network contr...Artificial neural network has unique advantages for massively parallel processing, distributed storage capacity and self-learning ability. The paper mainly constructs neural network identifier and neural network controller for system identification and control on temperature and hmnidity of heating and drying system of materials. And the paper introduces the structure and principles of neural network, and focuses on analyzing learning algorithm, training algorithm and limitation of the most widely applied multi-layer feed-forward neural network ( BP network) , based on which the paper proposes introducing momentum to improve BP network.展开更多
[Objective] The aim was to establish Elman neural network model to predict the dynamic changes of temperature. [Method] Considering the inherent nature of temperature, and dy dint of the temperature in Chongqing durin...[Objective] The aim was to establish Elman neural network model to predict the dynamic changes of temperature. [Method] Considering the inherent nature of temperature, and dy dint of the temperature in Chongqing during 1951-2010, the Elman artificial neural network model was applied to predict the temperature. [Result] This simulation result suggested that the relative error was small and can have a good simulation to the future temperature changes. [Conclusion] The prediction result can guide agricultural production and further apply to the field of pricing the weather derivative products.展开更多
Aim To study the identification and control of nonlinear systems using neural networks. Methods A new type of neural network in which the dynamical error feedback is used to modify the inputs of the network was empl...Aim To study the identification and control of nonlinear systems using neural networks. Methods A new type of neural network in which the dynamical error feedback is used to modify the inputs of the network was employed to reduce the inherent network approximation error. Results A new identification model constructed by the proposed network and stable filters was derived for continuous time nonlinear systems, and a stable adaptive control scheme based on the proposed networks was developed. Conclusion Theory and simulation results show that the modified neural network is feasible to control a class of nonlinear systems.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Co...This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method.展开更多
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a...In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.展开更多
In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission...In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission rate of Downlink Users(DUs).Meanwhile,the Quality of Service(QoS)of all D2D users must be satisfied.We comprehensively considered the interference among D2D communications and downlink transmissions.The original problem is strongly non-convex,which requires high computational complexity for traditional optimization methods.And to make matters worse,the results are not necessarily globally optimal.In this paper,we propose a novel Graph Neural Networks(GNN)based approach that can map the considered system into a specific graph structure and achieve the optimal solution in a low complexity manner.Particularly,we first construct a GNN-based model for the proposed network,in which the transmission links and interference links are formulated as vertexes and edges,respectively.Then,by taking the channel state information and the coordinates of ground users as the inputs,as well as the location of UAVs and the transmission power of all transmitters as outputs,we obtain the mapping from inputs to outputs through training the parameters of GNN.Simulation results verified that the way to maximize the total transmission rate of DUs can be extracted effectively via the training on samples.Moreover,it also shows that the performance of proposed GNN-based method is better than that of traditional means.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertaintie...In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertainties and input deadzone, the neural network technique is introduced because of its capability in approximation. In order to update the weights of the neural network, an adaptive control method is utilized to improve the system adaptability. Furthermore, the integral barrier Lyapunov function(IBLF) is adopt in control design to guarantee the condition of output constraints and boundedness of the corresponding tracking errors. The Lyapunov direct method is applied in the control design to analyze system stability and convergence. Finally, numerical simulations are conducted to prove the feasibility and effectiveness of the proposed control based on the model of Quanser's 2-DOF helicopter.展开更多
基金Project (No. 2002C12021) supported by the Science and Technology Department of Zhejiang Province,China
文摘Proportional integral plus feedforward (PI+FF) control was proposed for identifying the pipe temperature in hot water heating greenhouse. To get satisfying control result, ten coefficients must be adjusted properly. The data for training and testing the radial basic function (RBF) neural-networks model of greenhouse were collected in a 1028 m2 multi-span glasshouse. Based on this model, a method of coefficients adjustment is described in this article.
基金The National Natural Science Foundation of China(No.50725828,50808041)the Natural Science Foundation of Jiangsu Province(No.BK2008312)the Ph.D.Programs Foundation of Ministry of Education of China(No.200802861011)
文摘This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial neural network techniques to eliminate the temperature effects on the measured modal frequencies.Then,the measured modal frequencies under various temperatures are normalized to a reference temperature,based on which the auto-associative network is trained to monitor signal damage occurrences by means of neural-network-based novelty detection techniques.The effectiveness of the proposed approach is examined in the Runyang Suspension Bridge using 236-day health monitoring data.The results reveal that the seasonal change of environmental temperature accounts for variations in the measured modal frequencies with averaged variances of 2.0%.And the approach exhibits good capability for detecting the damage-induced 0.1% variance of modal frequencies and it is suitable for online condition monitoring of suspension bridges.
文摘By eliminating the need for externally applied coolant, internally cooled turning tools offer potential health, safety and cost benefits in many types of machining operation. As coolant flow is completely controlled, tool temperature measurement becomes a practical proposition and can be used to find and maintain the optimum machining conditions. This also requires an intelligent control system in the sense that it must be adaptable to different tool designs, work piece materials and machining conditions. In this paper, artificial neural networks (ANN) are assessed for their suitability to perform such a control function. Experimental data for both conventional tools used for dry machining and internally cooled tools is obtained and used to optimise the design of an ANN. A key finding is that both experimental scatter characteristic of turning and the range of machining conditions for which ANN control is required have a large effect on the optimum ANN design and the amount of data needed for its training. In this investigation, predictions of tool temperature with an optimised ANN were found to be within 5°C of measured values for operating temperatures of up to 258°C. It is therefore concluded that ANN’s are a viable option for in-process control of turning processes using internally controlled tools.
基金The National Key R&D Program of China under contract No.2021YFC3101603.
文摘Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.
基金supported by the Science and Technology Project of the Headquarters of the State Grid Corporation of China(52199922001U).
文摘The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining device reliability.Existing temperature monitoring methods based on the electro-thermal coupling model have limitations,such as ignoring device interactions and high computational complexity.To address these issues,an analysis of the parameters influencing IGBT failure is conducted,and a temperature monitoring method based on the Macro-Micro Attention Long Short-Term Memory(MMALSTM)recursive neural network is proposed,which takes the forward voltage drop and collector current as features.Compared with the traditional electricalthermal coupling model method,it requires fewer monitoring parameters and eliminates the complex loss calculation and equivalent thermal resistance network establishment process.The simulation model of a highspeed train traction system has been established to explore the accuracy and efficiency of MMALSTM-based prediction methods for IGBT power module junction temperature.The simulation outcomes,which deviate only 3.2% from the theoretical calculation results of the electric-thermal coupling model,confirm the reliability of this approach for predicting the temperature of IGBT power modules.
文摘Back propagation neural networks are used to retrieve atmospheric temperature profiles from NOAA-16 Advanced Microwave Sounding Unit-A (AMSU-A) measurements over East Asia. The collocated radiosonde observation and AMSU-A data over land in 2002-2003 are used to train the network, and the data over land in 2004 are used to test the network. A comparison with the multi-linear regression method shows that the neural network retrieval method can significantly improve the results in all weather conditions. When an offset of 0.5 K or a noise level of ±0.2 K is added to all channels simultaneously, the increase in the overall root mean square (RMS) error is less than 0.1 K. Furthermore, an experiment is conducted to investigate the effects of the window channels on the retrieval. The results indicate that the brightness temperatures of window channels can provide significantly useful information on the temperature retrieval near the surface. Additionally, the RMS errors of the profiles retrieved with the trained neural network are compared with the errors from the International Advanced TOVS (ATOVS) Processing Package (IAPP). It is shown that the network-based algorithm can provide much better results in the experiment region and comparable results in other regions. It is also noted that the network can yield remarkably better results than IAPP at the low levels and at about the 250-hPa level in summer skies over ocean. Finally, the network-based retrieval algorithm developed herein is applied in retrieving the temperature anomalies of Typhoon Rananim from AMSU-A data.
基金supported by the project of "SDUST Qunxing Program"(No.qx0902075)
文摘By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system.
文摘On the basis of the data obtained on Gleeble 1500 Thermal Simulator, the predicting models for the relation between stable flow stress during high temperature plastic deformation and deformation strain, strain rate and temperature for 1420 Al Li alloy have been developed with BP artificial neural networks method. The results show that the model on basis of BPNN is practical and it reflects the actual feature of the deforming process. It states that the difference between the actual value and the output of the model is in order of 5%. [
基金Project (201AA411040) supported by National Plan and Development Committee.
文摘A soft-measuring approach is presented to measure the flux of liquid zinc with high temperature andcausticity. By constructing mathematical model based on neural networks, weighing the mass of liquid zinc, the fluxof liquid zinc is acquired indirectly, the measuring on line and flux control are realized. Simulation results and indus-trial practice demonstrate that the relative error between the estimated flux value and practical measured flux value islower than 1.5%, meeting the need of industrial process.
基金The National High Technology Research and Development Program of China (863 Program)(No.2002AA812038)the NationalNatural Science Foundation of China (No.60974116)
文摘The temperature characteristics of a silicon microgyroscope are studied, and the temperature compensation method of the silicon microgyroscope is proposed. First, an open-loop circuit is adopted to test the entire microgyroscope's resonant frequency and quality factor variations over temperature, and the zero bias changing trend over temperature is measured via a closed-loop circuit. Then, in order to alleviate the temperature effects on the performance of the microgyroscope, a kind of temperature compensated method based on the error back propagation(BP)neural network is proposed. By the Matlab simulation, the optimal temperature compensation model based on the BP neural network is well trained after four steps, and the objective error of the microgyroscope's zero bias can achieve 0.001 in full temperature range. By the experiment, the real time operation results of the compensation method demonstrate that the maximum zero bias of the microgyroscope can be decreased from 12.43 to 0.75(°)/s after compensation when the ambient temperature varies from -40 to 80℃, which greatly improves the zero bias stability performance of the microgyroscope.
文摘Power uprates pose a threat to electrical generators due to possible parasite effects that can develop potential failure sources with catastrophic consequences in most cases. In that sense, it is important to pay close attention to overheating, which results from excessive system losses and cooling system inefficiency. The end region of a stator is the most sensitive part to overheating. The calculation of magnetic fields, the evaluation of eddy-current losses and the determination of loss-derived temperature increases, are challenging problems requiring the use of simulation methods. The most usual methodology is the finite element method, or linear regression. In order to address this methodology, a calculation method was developed to determine temperature increases in the last stator package. The mathematical model developed was based on an artificial intelligence technique, more specifically neural networks. The model was successfully applied to estimate temperatures associated to 108% power and used to extrapolate temperature values for a power uprate to 113.48%. This last scenario was also useful to test extrapolation accuracy. The method is applied to determine core-end temperature when power is uprated to 117.78%. At that point, the temperature value will be compared to with the values obtained using finite elements method and multivariate regression.
文摘Artificial neural network has unique advantages for massively parallel processing, distributed storage capacity and self-learning ability. The paper mainly constructs neural network identifier and neural network controller for system identification and control on temperature and hmnidity of heating and drying system of materials. And the paper introduces the structure and principles of neural network, and focuses on analyzing learning algorithm, training algorithm and limitation of the most widely applied multi-layer feed-forward neural network ( BP network) , based on which the paper proposes introducing momentum to improve BP network.
基金Supported by National Natural Science Foundation of China(61001125)~~
文摘[Objective] The aim was to establish Elman neural network model to predict the dynamic changes of temperature. [Method] Considering the inherent nature of temperature, and dy dint of the temperature in Chongqing during 1951-2010, the Elman artificial neural network model was applied to predict the temperature. [Result] This simulation result suggested that the relative error was small and can have a good simulation to the future temperature changes. [Conclusion] The prediction result can guide agricultural production and further apply to the field of pricing the weather derivative products.
文摘Aim To study the identification and control of nonlinear systems using neural networks. Methods A new type of neural network in which the dynamical error feedback is used to modify the inputs of the network was employed to reduce the inherent network approximation error. Results A new identification model constructed by the proposed network and stable filters was derived for continuous time nonlinear systems, and a stable adaptive control scheme based on the proposed networks was developed. Conclusion Theory and simulation results show that the modified neural network is feasible to control a class of nonlinear systems.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金supported in part by the National Natural Science Foundation of China (62173182,61773212)the Intergovernmental International Science and Technology Innovation Cooperation Key Project of Chinese National Key R&D Program (2021YFE0102700)。
文摘This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method.
文摘In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.
基金supported in part by the National Natural Science Foundation of China(61901231)in part by the National Natural Science Foundation of China(61971238)+3 种基金in part by the Natural Science Foundation of Jiangsu Province of China(BK20180757)in part by the open project of the Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space,Ministry of Industry and Information Technology(KF20202102)in part by the China Postdoctoral Science Foundation under Grant(2020M671480)in part by the Jiangsu Planned Projects for Postdoctoral Research Funds(2020z295).
文摘In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission rate of Downlink Users(DUs).Meanwhile,the Quality of Service(QoS)of all D2D users must be satisfied.We comprehensively considered the interference among D2D communications and downlink transmissions.The original problem is strongly non-convex,which requires high computational complexity for traditional optimization methods.And to make matters worse,the results are not necessarily globally optimal.In this paper,we propose a novel Graph Neural Networks(GNN)based approach that can map the considered system into a specific graph structure and achieve the optimal solution in a low complexity manner.Particularly,we first construct a GNN-based model for the proposed network,in which the transmission links and interference links are formulated as vertexes and edges,respectively.Then,by taking the channel state information and the coordinates of ground users as the inputs,as well as the location of UAVs and the transmission power of all transmitters as outputs,we obtain the mapping from inputs to outputs through training the parameters of GNN.Simulation results verified that the way to maximize the total transmission rate of DUs can be extracted effectively via the training on samples.Moreover,it also shows that the performance of proposed GNN-based method is better than that of traditional means.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
基金supported by the National Natural Science Foundation of China(61803085,61806052,U1713209)the Natural Science Foundation of Jiangsu Province of China(BK20180361)
文摘In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertainties and input deadzone, the neural network technique is introduced because of its capability in approximation. In order to update the weights of the neural network, an adaptive control method is utilized to improve the system adaptability. Furthermore, the integral barrier Lyapunov function(IBLF) is adopt in control design to guarantee the condition of output constraints and boundedness of the corresponding tracking errors. The Lyapunov direct method is applied in the control design to analyze system stability and convergence. Finally, numerical simulations are conducted to prove the feasibility and effectiveness of the proposed control based on the model of Quanser's 2-DOF helicopter.