期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Rare Earth Doped Optical Fibers for Temperature Sensing Utilizing Ratio-Based Technology 被引量:1
1
作者 王玉田 耿丽琨 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期171-174,共4页
A new and practical fluorescence temperature detecting system based on fluorescence intensity ratio was proposed . The background theory of fluorescence intensity-ratio method was presented simply. And the characters ... A new and practical fluorescence temperature detecting system based on fluorescence intensity ratio was proposed . The background theory of fluorescence intensity-ratio method was presented simply. And the characters of rare earth doped samples were detailed. The erbium-doped fiber was chosen as the sensing element. The energy levels of 2H11/2 and 4S3/2 are responsible for the emission of radiation at approximately 530 and 555 nm. The erbium-doped (960 ppm) fiber of length 20 cm and core diameter 3.2μm was used as the sensing part. A silica photodiode transfers the fluorescence signal to electric signal, then the ratio of the average of the two different signals was calculated by the computer and the temperature was obtained. The ratio R of the intensity resulting from the transition between the two levels varies proportionly with temperature interval from 293 K to 373 K. The sensitivity of the sensor is approximately 0.05 K-1. 展开更多
关键词 fluorescence intensity ratio rare-earth doped material temperature detecting optical fiber
下载PDF
Design and Realization of a Portable Temperature Sensor Calibrator
2
作者 Wei Mingming Liu Yushan Zhang Yunhao 《Meteorological and Environmental Research》 CAS 2018年第2期12-15,19,共5页
Due to the complex erection environment of various types of automatic stations,the provincial meteorological inspection department is difficult to carry out this work in terms of equipment or staffing. For this reason... Due to the complex erection environment of various types of automatic stations,the provincial meteorological inspection department is difficult to carry out this work in terms of equipment or staffing. For this reason,a portable temperature sensor calibrator was developed,and it uses semiconductor refrigeration technology to increase and decrease temperature quickly. It uses an intelligent PID temperature controller as a control device to provide a stable temperature environment; it is small,light and easy to operate,and it provides technical support for the calibration of temperature sensors. The structure and working principle of this equipment were analyzed,and its performance was tested. All the indicators could meet the requirements of field calibration. The calibrator will provide a strong guarantee for the reliability of temperature data obtained at automatic meteorological stations. 展开更多
关键词 Automatic meteorological stations temperature sensors temperature calibration temperature detection
下载PDF
Gold Nanoparticles/Thermochromic Composite Film on Screen-Printed Electrodes for Simultaneous Detection of Protein and Temperature
3
作者 Dorothy Araba Yakoba Agyapong Hanjia Jiang +2 位作者 Xingjia Ni Jingwen Wu Hongjuan Zeng 《Journal of Biomaterials and Nanobiotechnology》 2021年第2期7-19,共13页
In this study, gold nanoparticles and thermochromic composite films modified screen-printed carbon electrodes (TM-AuNPsSPCEs) were developed as a platform for the simultaneous detection of protein and temperature. The... In this study, gold nanoparticles and thermochromic composite films modified screen-printed carbon electrodes (TM-AuNPsSPCEs) were developed as a platform for the simultaneous detection of protein and temperature. The TM-AuNPs composited film had better sensitivity resulting from the gold nanoparticles amplification effect. A phase transition model analysis of TM-AuNPs films found that the TM-AuNPs films had three-phase transition intervals (<45℃, 45℃ to 80℃ and >80℃) which accommodated the temperature requirements for protein denaturation. When used to detect different concentrations of haemoglobin (Hb) solution, the TM-AuNPs modified SPCEs had a better sensitivity in detecting the different concentrations in comparison to TM and AuNP modified SPCEs which showed no clear sensitivity towards the different Hb concentrations. The dual detection and excellent sensitivity show a good application prospect for the study of the TM-AuNPs composite film. 展开更多
关键词 Screen-Printed Carbon Electrodes Gold Nanoparticles Thermochromic Material Simultaneous Detection of Proteins and temperature
下载PDF
Prospect and research progress of detecting dynamic change in crustal stress by bedrock temperature
4
作者 Shunyun Chen Qiongying Liu +1 位作者 Peixun Liu Yanqun Zhuo 《Geohazard Mechanics》 2023年第2期119-127,共9页
A new method of detecting stress change by temperature(DSCT),has been recently proposed on the basis of the experimental results in laboratory,and verified by field observation.In this paper,at first,physical backgrou... A new method of detecting stress change by temperature(DSCT),has been recently proposed on the basis of the experimental results in laboratory,and verified by field observation.In this paper,at first,physical background is concisely introduced,and experimental researches are followed.Then,the key techniques are reviewed,and the main results on in-situ observations are also given in detail.At last,we emphasize on the prospects of this method for being investigated further.The potential prospect includes six contents:(1)to observe the tidal force and its secondary fluid thermal effect;(2)to study temperature response to change in direction of the stress change;(3)to carry out practical engineering application;(4)to analyze the strong earthquake risk,based on bedrock temperature observation;(5)to conduct in situ experiment on DSCT;(6)to explain quantitatively the satellite thermal infrared anomaly.In short,considering that the dynamic change of the crustal stress is a key parameter of earthquake forecasting or engineering application,the method of DSCT has important practical significance for earthquake risk or engineering applications. 展开更多
关键词 detecting stress change by temperature(DSCT) Crustal stress Bedrock temperature Co-seismic response In situ experiment
原文传递
Heat transfer analysis of magnesium alloy plate during transport process 被引量:1
5
作者 Qichi Le Weitao Jia Fangkun Ning 《Journal of Magnesium and Alloys》 SCIE EI CAS 2019年第2期291-296,共6页
Temperature detection and tracking of AZ31B magnesium alloy plate during the air-cooling transport process were investigated and carried out under different thicknesses and initial temperatures.Experimental results sh... Temperature detection and tracking of AZ31B magnesium alloy plate during the air-cooling transport process were investigated and carried out under different thicknesses and initial temperatures.Experimental results show that there exists a sudden temperature drop in the range of 1/4 of width distanced from the edge.When the plate is cooled by 25-56°C,the maximum inhomogeneous temperature distribution under all process conditions will appear in width direction.For the air-cooling transport process,the temperature control model for predicting the average temperature of the Mg plate after a predetermined time period can be established by modifying the Stefan-Boltzmann empirical equation.The model mainly depends on the plate specifications and air-cooling time. 展开更多
关键词 AZ31B magnesium alloy temperature detection Transport process temperature control model
下载PDF
Ocular surface heat effects on ocular hemodynamics detected by real-time measuring device
6
作者 Ting-Ting Li Guang-Bin Shao +4 位作者 Yu-Long Jiang Jing-Xuan Wang Xin-Rong Zhou Min Ren Long-Qiu Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第12期1902-1908,共7页
AIM: To investigate the ocular hemodynamic effects of applying a hot compress to the eye.METHODS: The right eyes of five New Zealand white rabbits, both male and female, were hot-compressed for 18 min. An independentl... AIM: To investigate the ocular hemodynamic effects of applying a hot compress to the eye.METHODS: The right eyes of five New Zealand white rabbits, both male and female, were hot-compressed for 18 min. An independently designed novel ocular contacttype temperature measuring device was used to measure the ocular surface temperature before and after the heating. Relevant retrobulbar hemodynamic parameters such as peak systolic velocity(PSV), end diastolic velocity(EDV), and resistance index(RI) of each of the central retinal artery(CRA), long posterior ciliary artery(LPCA), and ophthalmic artery(OA), as well as the mean velocity(V) of the central retinal vein(CRV), were measured using a color Doppler flow imaging(CDFI) technique and expressed as mean values with standard deviation(mean±SD). A statistical analysis was conducted based on a paired t-test and the Wilcoxon signed-rank test. RESULTS: The employed real-time temperature measuring device was able to accurately measure ocular surface temperature during the hot-compress process. The temperature increased after the hot compress was applied. Analysis showed that the PSV and EDV values of the CRA and LPCA significantly increased after the application of the hot compress, as did the Vof the CRV. There were no significant changes in the EDV of the OA nor the RI of each artery. CONCLUSION: This experiment, which is the first of its kind, confirms that the retrobulbar blood flow velocities can increase upon heating the ocular surface. This simple method may be useful in the future. 展开更多
关键词 ocular hemodynamics ocular surface heating temperature detection device color Doppler flow imaging
下载PDF
Sulfur dioxide gas sensing at room temperature based on tin selenium/tin dioxide hybrid prepared via hydrothermal and surface oxidation treatment 被引量:2
7
作者 Qian-Nan Pan Zhi-Min Yang +1 位作者 Wei-Wei Wang Dong-Zhi Zhang 《Rare Metals》 SCIE EI CAS CSCD 2021年第6期1588-1596,共9页
In this paper,a novel SnSe/SnO_(2) nanoparticles(NPs) composite has been successfully fabricated through hydrothermal method and surface oxidation treatment.The as-prepared sample was characterized by X-ray diffractio... In this paper,a novel SnSe/SnO_(2) nanoparticles(NPs) composite has been successfully fabricated through hydrothermal method and surface oxidation treatment.The as-prepared sample was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM).A series of morphological and structural characteristics confirm that the SnSe/SnO_(2) NPs composite shows a core-shell structure with a SnO_(2) shell with thickness of 6 nm.The prepared SnO_(2) NPs and SnSe/SnO_(2) NPs composite were applied as gas-sensing materials,and their gas-sensing properties were investigated at room temperature systematically.Experimental results show that the response value of the SnSe/SnO_(2) composite sensor toward 100×10^(-6) SO_(2) is 15.15%,which is 1.32 times higher than that of pristine SnSe(11.43%).And the SnSe/SnO_(2) composite sensor also has a detection limit as low as 74×10^(-9) and an ultra-fast response speed.The enhanced gas-sensing performance is attributed to the formation of p-n heterojunction between SnSe and SnO_(2) and the appropriate SnO_(2) shell thickness. 展开更多
关键词 SO_(2)gas sensor Room temperature detection Core-shell structure SnSe/SnO_(2)composite Debye length
原文传递
Preparation of two-dimensional molybdenum disulfide for NO2 detection at room temperature 被引量:1
8
作者 Xin Yu Ding Wang +2 位作者 Yuqiu Wang Ji Yan Xianying Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第8期2099-2102,共4页
In this work,the two-dimensional MoS2 film was prepared by sulfuring the molybdenum atomic layer on SiO2/Si substrate.The reaction temperature,heating rate,holding time and carrier gas flow rate were inve stigated com... In this work,the two-dimensional MoS2 film was prepared by sulfuring the molybdenum atomic layer on SiO2/Si substrate.The reaction temperature,heating rate,holding time and carrier gas flow rate were inve stigated compre hensively.The quality of MoS2 film was characterized by optical microscopy,atomic fo rce microscopy,Raman and photoluminescence spectro scopy.The characte rization results showed that the optimum synthesis parameters were heating rate of 25℃/min,reaction temperature of 750℃,holding time of 30 min and carrier gas velocity of 100 sccm.The MoS2 gas sensor was fabricated and its gas sensing performance was tested.The test results indicated that the sensor had a good response to both reducing gas(NH3)and oxidizing gas(NO2)at room temperature.The sensitivity to 100 ppm of NO2 was 31.3%,and the response/recovery times were 4 s and 5 s,respectively.In addition,the limit of detection could be as low as 1 ppm.This work helps us to develop low power and integrable room temperature NO2 sensors. 展开更多
关键词 MoS2 film NO2 detection Two-dimensional materials Gas sensors NANODEVICES Room temperature detection
原文传递
Ultralow-noise single-photon detection based on precise temperature controlled photomultiplier with enhanced electromagnetic shielding 被引量:1
9
作者 王明宇 李政勇 +4 位作者 蔡艳辉 张伊 詹翔空 王海洋 吴重庆 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第10期7-10,共4页
We demonstrate an ultralow-noise single-photon detection system based on a sensitive photomultiplier tube(PMT) with precise temperature control, which can capture fast single photons with intervals around 10 ns.By i... We demonstrate an ultralow-noise single-photon detection system based on a sensitive photomultiplier tube(PMT) with precise temperature control, which can capture fast single photons with intervals around 10 ns.By improvement of the electromagnetic shielding and introduction of the self-differencing method, the dark counts(DCs) are cut down to ~1%. We further develop an ultra-stable PMT cooling subsystem and observe that the DC goes down by a factor of 3.9 each time the temperature drops 10°C. At -20°C it is reduced 400 times with respect to the room temperature(25°C), that is, it becomes only 2 counts per second, which is on par with the superconducting nanowire detectors. Meanwhile, despite a 50% loss, the detection efficiency is still 13%. Our detector is available for ultra-precise single-photon detection in environments with strong electromagnetic disturbances. 展开更多
关键词 PMT Ultralow-noise single-photon detection based on precise temperature controlled photomultiplier with enhanced electromagnetic shielding
原文传递
Review on thermal-related measurement methods for superconducting devices and prospect for high-speed maglev transportation application
10
作者 Jun Zheng Minghui Wei +2 位作者 Siyi Quan Yicheng Feng Peng Wen 《Superconductivity》 2022年第3期83-96,共14页
High‐temperature superconducting(HTS)bulks can not only be self‐stable when levitated above a permanent magnet(PM)but also can be used as quasi PM with higher magnetic energy product due to their magnetic flux pinni... High‐temperature superconducting(HTS)bulks can not only be self‐stable when levitated above a permanent magnet(PM)but also can be used as quasi PM with higher magnetic energy product due to their magnetic flux pinning characteristics.Therefore,HTS bulks have wide application potentials in maglev trains,maglev bearings,flywheel energy storage,drug delivery,and high field magnets.In the external magnetic field of common application scenarios,HTS bulks have no external input current,so it is difficult to achieve the overall quench.However,local quenching in the bulk is still possible in the harsh fluctuating external field environment.Although it is difficult to reach the total quench,its critical parameters like Jc will inevitably deteriorate,which may collapse the application system.Therefore,in contrast to superconducting wires and tapes that are more concerned with quench detection,HTS bulks with a 3D volume effect are more focused on internal sensitive temperature locations,the impacts of volume and scale,and the coupling influence on application parameters such as magnetism and force.Therefore,for efficient thermal‐related measurement of HTS bulk applications,this paper investigates and discusses 12 commonly‐used temperature measurement or quench detection methods in all superconducting application fields.These methods primarily refer to the current quench detection technologies used in HTS tapes and wires.From the standpoint of practical temperature measurement requirements of HTS bulks and technological limitations of maglev application scenarios,working characteristics and service conditions of the 12 methods,and 4 temperature detection methods are selected through a comprehensive understanding and comparison of basic principles.They are expected to be used in real‐time monitoring and early warning schemes for onboard superconducting levitation devices of HTS maglev transportation or other applications in the future. 展开更多
关键词 High‐temperature superconducting bulk temperature sensitivity High‐temperature superconducting magnetic levitation High‐temperature superconducting tape Quench detection temperature detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部