Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surfa...Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries.展开更多
Local climate zones(LCZs)are an effective nexus linking internal urban structures to the local climate and have been widely used to study urban thermal environment.However,few studies considered how much the temperatu...Local climate zones(LCZs)are an effective nexus linking internal urban structures to the local climate and have been widely used to study urban thermal environment.However,few studies considered how much the temperature changed due to LCZs transformation and their synergy.This paper quantified the change of urban land surface temperature(LST)in LCZs transformation process by combining the land use transfer matrix with zonal statistics method during 2000–2019 in the Xi’an metropolitan.The results show that,firstly,both LCZs and LST had significant spatiotemporal variations and synchrony.The period when the most LCZs were converted was also the LST rose the fastest,and the spatial growth of the LST coincided with the spatial expansion of the built type LCZs.Secondly,the LST difference between land cover type LCZs and built type LCZs gradually widened.And LST rose more in both built type LCZs transferred in and out.Finally,the Xi’an-Xianyang profile showed that the maximum temperature difference between the peaks and valleys of the LST increased by 4.39℃,indicating that localized high temperature phenomena and fluctuations in the urban thermal environment became more pronounced from 2000 to 2019.展开更多
The Ailaoshan-Red River(ASRR) shear zone is one of the major Southeast Asian tectonic discontinuities that have figured the present tectonic framework of the eastern Tibet.Several metamorphic massifs are distributed...The Ailaoshan-Red River(ASRR) shear zone is one of the major Southeast Asian tectonic discontinuities that have figured the present tectonic framework of the eastern Tibet.Several metamorphic massifs are distributed linearly along the shear zone,e.g.Xuelongshan,Diancangshan, Ailaoshan and Day Nui Con Voi from north to south.They bear a lot of lines of evidence for the tectonic evolution of the eastern Tibetan at different crustal levels in different tectonic stages.Controversy still exists on the deformation structures,microstructures and their relationship with metamorphisms along the ASRR.In this paper detailed microstructural and EBSD(Electron Backscattered Diffraction) fabric analysis of some highly sheared granitic rocks from different massifs along the ASRR are conducted.High temperature structures and microstructures are preserved in unsheared gneisses,in weakly sheared xenoliths or in some parts of the highly sheared rocks(mylonites).Several types of high temperature quartz c-axis fabrics show symmetrical patterns or transitions from symmetrical to asymmetrical patterns.The former are attributed to coaxial deformation during regional shortening in an early stage of the Indian-Eurasian tectonic interaction and the latter are related to the transitions from coaxial compression to noncoaxial shearing during the post-collisional ASRR left lateral shearing.展开更多
The combined effects of salinity with low root zone temperature (RZT) on plant growth and photosynthesis were studied in tomato (Solanum lycopersicum) plants. The plants were exposed to two different root zone tem...The combined effects of salinity with low root zone temperature (RZT) on plant growth and photosynthesis were studied in tomato (Solanum lycopersicum) plants. The plants were exposed to two different root zone temperatures (28/20℃, 12/8℃, day/night temperature) in combination with two NaC1 levels (0 and 100 mmol L-l). After 2 wk of treatment, K+ and Na~ concentration, leaf photosynthetic gas exchange, chlorophyll fluorescence and leaf antioxidant enzyme activities were measured. Salinity significantly decreased plant biomass, net photosynthesis rate, actual quantum yield of photosynthesis and concentration of K+, but remarkably increased the concentration of Na+. These effects were more pronounced when the salinity treatments were combined with the treatment of low RZT conditions. Either salinity or low RZT individually did not affect maximal efficiency of PSII photochemistry (Fv/Fm), while a combination of these two stresses decreased Fv/Fm considerably, indicating that the photo-damage occurred under such conditions. Non-photochemical quenching was increased by salt stress in accompany with the enhancement of the de-epoxidation state of the xanthophyll cycle, in contrast, this was not the case with low RZT applied individually. Salinity stress individually increased the activities of SOD, APX, GPOD and GR, and decreased the activities of DHAR. Due to the interactive effects of salinity with low RZT, these five enzyme activities increased sharply in the combined stressed plants. These results indicate that low RZT exacerbates the ion imbalance, PSII damage and photosynthesis inhibition in tomato plants under salinity. In response to the oxidative stress under salinity in combination with low RZT, the activities of antioxidant enzymes SOD, APX, GPOD, DHAR and GR were clearly enhanced in tomato plants.展开更多
The Hongtoushan Volcanogenic Massive Sulphide Deposit(VMSD)occurs in the Hunbei granite-greenstone terrane,Liaoning Province,NE China.Rocks in the mining area have been metamorphosed around 3.0-2.8 Ga to upper amphi...The Hongtoushan Volcanogenic Massive Sulphide Deposit(VMSD)occurs in the Hunbei granite-greenstone terrane,Liaoning Province,NE China.Rocks in the mining area have been metamorphosed around 3.0-2.8 Ga to upper amphibolite facies at temperatures between 600℃and 650℃.Cordierite-anthophyllite gneiss(CAG)in the Hongtoushan mining area,which occurs hundreds of meters below the ore horizon,corresponds to the metamorphosed semi-conformable alteration zone of the VMSD hydrothermal system,whereas the one immediately below the main ore layer represents the metamorphosed pipe-like alteration zone.Whole-rock oxygen isotope signatures were well preserved in both types of CAGs,although the mineral components have been entirely changed during regional metamorphism.Therefore,whole-rock oxygen isotopes can be used to estimate the formation temperature of both types of alteration zone.Calculations show that the semi-conformable and pipelike alteration zones for the Hongtoushan submarine hydrothermal system were formed at 290-360℃and 285-320°C,respectively,whereas estimates for the former were slightly higher than that of the latter,indicating that the semi-conformable alteration zone represents the deep part of the Hongtoushan seafloor hydrothermal system,while the pipe-like alteration zone represents the discharge conduits for metal-rich fluids,which is closer to the seafloor.展开更多
Hexagonal boron nitride(h-BN)films are synthesized by dual temperature zone low-pressure chemical vapor deposition(LPCVD)through using a single ammonia borane precursor on non-catalytic c-plane Al_(2)O_(3)substrates.T...Hexagonal boron nitride(h-BN)films are synthesized by dual temperature zone low-pressure chemical vapor deposition(LPCVD)through using a single ammonia borane precursor on non-catalytic c-plane Al_(2)O_(3)substrates.The grown films are confirmed to be h-BN films by various characterization methods.Meanwhile,the growth rates and crystal quality of h-BN films at different positions in the dual temperature zone are studied.It is found that the growth rates and crystal quality of the h-BN films at different positions on the substrate are significantly different.The growth rates of the h-BN thin films show their decreasing trends with the rearward position,while the crystal quality is improved.This work provides an experimental basis for the preparation of large area wafer thick h-BN films by LPCVD.展开更多
Taking Cucurbita maxima and Cucurbita moschata as root stocks,and‘Jinyou No 3'cucumber as scion,the effects of different root zone temperature conditions optimal temperature(CK)(18-20℃),suboptimal temperature(13...Taking Cucurbita maxima and Cucurbita moschata as root stocks,and‘Jinyou No 3'cucumber as scion,the effects of different root zone temperature conditions optimal temperature(CK)(18-20℃),suboptimal temperature(13-15℃)and low temperature(8-10℃)on the growth and photosynthesis indexes were studied.The results showed that,compared with optimal temperature(CK),suboptimal temperature and low temperature produced a significant inhibition of growth on cucumbers.The plant height,stem diameter,leaf area,number of leaves and dry weight of aboveground part were all reduced,dry weight of underground part and root shoot ratio all increased,while the inhibition was more significant at low temperature.Low and suboptimal temperature conditions also reduced SPAD value,net photosynthetic rate,transpiration rate,intercellular CO_(2) concentration and stomatal conductance of the grafted cucumber.And there were differences between different grafted seedlings,and seedlings with‘black seeds'as stock performed better than those with‘white seeds'as stock at low temperature.展开更多
Soil temperature influences crop growth and quality under field and greenhouse conditions;however, precise investigation using controlled cultivation systems is largely lacking. We investigated effects of root-zone te...Soil temperature influences crop growth and quality under field and greenhouse conditions;however, precise investigation using controlled cultivation systems is largely lacking. We investigated effects of root-zone temperatures on growth and components of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red Wave) under a controlled cultivation system at 20°C. Compared with ambient root-zone temperature exposure, a 7-day low temperature exposure reduced leaf area, stem size, fresh weight, and water content of lettuce. However, root-zone heating treatments produced no significant changes in growth parameters compared with ambient conditions. Leaves under low root-zone temperature contained higher anthocyanin, phenols, sugar, and nitrate concentrations than leaves under other temperatures. Root oxygen consumption declined with low temperature root exposure, but not with root heating. Leaves of plants under low rootzone temperature showed hydrogen peroxide production, accompanied by lipid peroxidation. Therefore, low temperature root treatment is suggested to induce oxidative stress responses in leaves, activating antioxidative secondary metabolic pathways.展开更多
This paper investigated the effects of root-zone (RZ) CO<sub>2</sub> concentration ([CO<sub>2</sub>]) on root morphology and growth, nitrate (NO<sub>3</sub>-</sup>) uptake and...This paper investigated the effects of root-zone (RZ) CO<sub>2</sub> concentration ([CO<sub>2</sub>]) on root morphology and growth, nitrate (NO<sub>3</sub>-</sup>) uptake and assimilation of lettuce plants at different root-zone temperatures (RZT). Elevated RZ [CO<sub>2</sub>] stimulated root development, root and shoot growth compared to ambient RZ [CO<sub>2</sub>]. The greatest increase in root growth was observed in plants grown under elevated RZ [CO<sub>2</sub>] of 50,000 ppm. However, RZ [CO<sub>2</sub>] of 10,000 ppm was sufficient to achieve the maximal leaf area and shoot productivity. Lettuce plants exhibited faster shoot and root growth at 20°C-RZT than at ambient (A)-RZT. However, under elevated RZ [CO<sub>2</sub>], the magnitude of increased growth was greater at A-RZT than at 20°C-RZT. Compared to RZ [CO<sub>2</sub>] of 360 ppm, elevated RZ [CO<sub>2</sub>] of 10,000 ppm increased NO<sub>3</sub>-</sup> accumulation and nitrate reductase activity (NRA) in both leaves and roots. NO<sub>3</sub>-</sup> concentrations of leaf and root were higher at 20°C-RZT than at A-RZT in all plants. NRA was higher in root than in leaf especially under A-RZT. The total reduced nitrogen (TRN) concentration was significantly higher in plants grown under elevated RZ [CO<sub>2</sub>] of 10,000 ppm than under ambient RZ [CO<sub>2</sub>] of 360 ppm with greater concentration in 20°C-RZT plants than in A-RZT plants. These results imply that elevated RZ [CO<sub>2</sub>] significantly affected root morphology, root and shoot growth and N metabolism of temperate lettuce with greater impacts at A-RZT than at 20°C-RZT. These findings have practical significance to vegetable production by growing the vegetable crops at cool-RZT with elevated RZ [CO<sub>2</sub>] to enhance its productivity.展开更多
Arabidopsis thaliana (L.) Heyhn. is a well known model plant in plant research. However, its growth conditions and diminutive stature associated with low biomass at maturity make it a challenging species for physiolog...Arabidopsis thaliana (L.) Heyhn. is a well known model plant in plant research. However, its growth conditions and diminutive stature associated with low biomass at maturity make it a challenging species for physiological studies. While in the tropical countries, it can only be grown either by tissue cultures or in growth chambers under controlled conditions. An aeroponic technique with 20°C ± 2°C and 30°C ± 2°C root-zone temperatures (RZT) was used to grow Arabidopsis (Columbia ecotype) in a tropical greenhouse with natural irradiance and high ambient temperature (38°C/28°C day/night). Seedlings germinated in growth chambers at 20°C or 30°C. At 6 to 8 leaf stage, they were transferred to the aeroponic troughs with their roots exposed to constant temperature of 20°C ± 2°C and 30°C ± 2°C while their aerial parts were subjected to fluctuating ambient temperature from 28°C to 38°C. After a week, plants have acclimatised to both RZTs and started developing normal rosettes, bolted and yielded viable seeds. However, 20°C ± 2°C RZT allowed them to recover from turgor pressure despite of wilting, and significantly increased biomass. Mature plants grown in each RZTs were compared morphologically and physiologically to the plants grown in growth chamber (GC) at 20°C (root and shoot) temperature with 60% relative humidity. Aeroponically grown plants did not experience photoinhibition, and also exhibited higher photosynthetic light usage efficiency and higher capacities of heat dissipation, compared to GC plants. This aeroponics with cool RZTs can allow the use of Arabidopsis as a model plant even under tropical climate.展开更多
The calcination zone temperature control is an important problem in rotary kiln production process. In order to solve this problem,a predictive control method based on improved harmony search algorithm( IHS)and least ...The calcination zone temperature control is an important problem in rotary kiln production process. In order to solve this problem,a predictive control method based on improved harmony search algorithm( IHS)and least square support vector machine( LSSVM) is proposed. LSSVM is utilized to bulid the nonlinear predictive model of calcination zone temperature in rotary kiln. The calcination zone temperature can be predicted through input control variable,the error and error correction of output feedback. The performance index function is established by deviation and control variable. An IHS algorithm with better fitness and faster convergence speed is proposed. The optimal control variable can be obtained by rolling optimization through this IHS algorithm. The stability of this predictive control method is proved to be feasible. The simulation and actual experiment results show that the proposed predictive control method has good control performance.展开更多
Air and soil temperatures strongly influence the growth and quality of crops. However, in root vegetables, such as carrot, few experiments aimed at regulating growth and quality by manipulating root-zone temperature h...Air and soil temperatures strongly influence the growth and quality of crops. However, in root vegetables, such as carrot, few experiments aimed at regulating growth and quality by manipulating root-zone temperature have been reported. We investigated the effect of root-zone temperatures (20°C, 25°C, 29°C, and 33°C) on carrot growth and components using a hydroponic system. High root-zone temperatures for 14 days reduced shoot and rootgrowth and water content. In contrast, total phenolic compounds and soluble-solid content increased in tap roots under high-temperature treatment. Root oxygen consumption was upregulated after 7 days under high-temperature treatment. These results suggest that high root-zone temperatures induce drought-like stress responses that modulate carrot biomass and components. High root-zone temperature treatments administered to hydroponically grown crops may be a valuable tool for improving and increasing the quality and value of crops.展开更多
Using a color-tunable organic light-emitting diode (CT-OLED) can accord with the circadian cycle of humans and realize healthy lighting. The variation range of the correlated color temperature (CCT) is an important pa...Using a color-tunable organic light-emitting diode (CT-OLED) can accord with the circadian cycle of humans and realize healthy lighting. The variation range of the correlated color temperature (CCT) is an important parameter to measure the performance of CT-OLEDs. In this paper, the effect of changing the utilization of phosphorescent materials and the position of the recombination zone (RZ) in the device are investigated by changing the thickness of the emissive layer (EML) and the doping ratio of the host and guest materials. The results show that reducing the red phosphorescent material and improving the blue phosphorescent material can affect the change direction of CCT, but it is not enough to expand the span of CCT (ΔCCT). It is more conducive to improving ΔCCT by more reasonable regulation of the position of the main RZ in EML and the energy transfer from the blue sub-EML to the red sub-EML. Device D obtains the best electro-optic and spectral characteristics, in which the maximum ΔCCT is 5746 K (2661 - 8407 K) as the voltage changes from 3.75 V to 9.75 V, the maximum current efficiency and luminance reach 18.34 cd·A<sup>-1</sup> and 12,100 cd·m<sup>-2</sup>, respectively.展开更多
Although tropical high ambient temperature and humidity severely reduced the productivity of temperate plants, temperate vegetable crops such as lettuce have been successfully grown in Singapore by only cooling its ro...Although tropical high ambient temperature and humidity severely reduced the productivity of temperate plants, temperate vegetable crops such as lettuce have been successfully grown in Singapore by only cooling its root-zone. In this paper, a cool Meditteranean vegetable, Eruca sativa, was studied to understand how different RZTs can impact its shoot productivity, photosynthesis and nutritional quality. All plants were cultivated using aeroponic systems in a tropical greenhouse under hot ambient conditions where roots were subjected to four different root-zone temperatures (RZTs) of 20°C-RZT, 25°C-RZT, 30°C-RZT and fluctuating ambient temperatures ranged from 25°C to 38°C [25°C/38°C (ambient)]-RZT. Parameters studied include shoot fresh weight (FW), photosynthetic gas exchange, midday chlorophyll (Chl) fluorescence F<sub>v</sub>/F<sub>m</sub> ratio, Chl fluorescence photochemical quenching (qP), non-photochemical quenching (qN) and electron transport rate (ETR), total phenolic compounds and mineral content such as potassium (K), calcium (Ca), magnesium (Mg) and iron (Fe). Among the 4 different RZT treatments, E. sativa plants grown under ambient-RZT (25/38°C-RZT) had the lowest shoot and root FW while those plants grown under 20°C-RZT had highest productivity of shoot and root. However, there were no significant differences in shoot and root FW in plants grown at 25°C- and 30°C-RZT. Compared to plants grown under 25°C/38°C (ambient-RZT), light-saturated photosynthetic CO<sub>2</sub> assimilation rate (A<sub>sat</sub>) and stomatal conductance (g<sub>ssat</sub>) were similarly higher in 20°C-, 25°C- and 30°C-RZT. All plants had midday Chl fluorescence F<sub>v</sub>/F<sub>m</sub> ratio lower than <0.8 ranged from 0.785 to 0.606 with the highest and lowest ratios recorded in 20°C-RZT and ambient-RZT plants, respectively. These results indicate that cooling the RZ of E. sativa plants protected their PS II from photoinactivation during midday in the greenhouse. There were no significant differences observed in photochemical quenching (qP), non-photochemical quenching (qN) and electron transport rate among plants grown under 20°C-, 25°C- and 30°C-RZT. However, plants grown under ambient-RZT had lower qP, qN and ETR compared to all other plants. E. sativa at 20°C-RZT with the best developed roots had the highest dietary mineral (K, Mg, Ca and Fe) contents but lower total phenolics content. In contrast, ambient-RZT, plants with poorly developed roots had the lowest mineral content but highest total phenolic content. The results of this study suggest that cooling of roots is a feasible method for the cultivation of E. sativa in the tropic, which enhances the content of dietary minerals in shoots.展开更多
Two contents(1.5%and3%)of TiB2nanoparticles were introduced in Al?Mn?Mg3004alloy to study their effects on theelevated-temperature properties.Results show that TiB2nanoparticles were mainly distributed at the interden...Two contents(1.5%and3%)of TiB2nanoparticles were introduced in Al?Mn?Mg3004alloy to study their effects on theelevated-temperature properties.Results show that TiB2nanoparticles were mainly distributed at the interdendritic grain boundarieswith a size range of20?80nm,which is confirmed by transmission electron microscopy(TEM)and X-ray diffraction(XRD).Therefore,the volume fraction of the dispersoid free zones is greatly reduced and the motion of grain boundaries and dislocations isinhibited more effectively at elevated temperature.After peak precipitation heat treatment,the yield strengths in the alloy with3%TiB2addition at room temperature and300°C were increased by20%and13%respectively,while the minimum creep rate at300°Cwas reduced to only1/5of the base alloy free of TiB2,exhibiting a considerable improvement of elevated-temperature properties inAl?Mn?Mg alloys.展开更多
Sediment size governs advection, controlling the hydraulic conductivity of the stratum, and conduction, influencing the amount of surface area in contact between the sediment particles. To understand the role of sedim...Sediment size governs advection, controlling the hydraulic conductivity of the stratum, and conduction, influencing the amount of surface area in contact between the sediment particles. To understand the role of sediment particle size on thermal profiles within the hyporheic zone, a statistical approach, involving general summary statistics and time series cross-correlation, was employed. Data were collected along two riffles: Site 1: gravel (d50 = 3.9 mm) and Site 2: sand (d50 =0.94 mm).Temperature probe grids collected 15-minute temperature data at 30, 60, 90, and140cm below the streambed surface over a 6 month period. Surface water and air temperature were recorded. Diel temperature signal penetration depth was limited to the upper 30cm of the streambed and was driven by advection. Surface seasonal trends were detected at greater depths, indicating that thermal pulses are transmitted initially by advection and by conduction to areas deeper in the hyporheic zone. Site 1 showed a high degree of thermal heterogeneity via a localized downwelling zone within a gaining stream environment. Site 2 exhibited a vertically and horizontally homogenized thermal environment attributed to an increased amount of sand sediments that limited advection and significant groundwater discharge that mediated the effects of downwelling surface water.展开更多
This study attempts to acquire information on tectonic activity in western China from land surface temperature (LST) field data. On the basis of the established relationship between heat and strain, we analyzed the ...This study attempts to acquire information on tectonic activity in western China from land surface temperature (LST) field data. On the basis of the established relationship between heat and strain, we analyzed the LSTdistribution in western China using the satellite data product MODIS/Terra. Our results show that: 1. There are departures from annual changes of LSTin some areas, and that these changes are associated with the activity of some active tectonic zones. 2. When annual-change background values caused by climate factors are removed, the long-period component (LSTLow) of temperature residual (AT) of the LSTis able to serve as an indicator for tectonic activity. We have found that a major earthquake can produce different effects on the/ST fields of surrounding areas. These effects are characterized by both rises and drops in temperature. For example, there was a noteworthy temperature decline associated with the Sumatran M9 earthquake of 2004 in the Bayan Har-Songpan block of central Tibetan Plateau. 3. On the other hand, the LST field of a single area may respond differently to major shocks occurring in different areas in the regions surrounding China. For instance, the Kun- lun M 8.1 event made the LSTon the Longmen Mountains fault zone increase, whereas the Zaisan Lake M 7.9 quake of 2003, and the Sumatran M 9 event of 2004, caused decreases in the same area's LST. 4. The variations of land surface temperature (LST) over time are different in different tectonic areas. These phenomena may provide clues for the study of tectonic deformation processes. On the basis of these phenomena, we use a combi- nation of temperature data obtained at varied depths, regional seismicity and strain results obtained with GPS measurements, to test the information related to tectonic activity derived from variations of the LST field, and discuss its implications to the creation of models of regional tectonic deformation.展开更多
The present work is focused on the relationship between effective segregation coefficient keff and tem- perature of melting zone for purification of phosphorus by zone melting method. Values of keff at four temperatur...The present work is focused on the relationship between effective segregation coefficient keff and tem- perature of melting zone for purification of phosphorus by zone melting method. Values of keff at four temperatures of melting zone are obtained for zone pass n = 1 at travel velocity of molten zone v = 5x 10^-3 m. h^-1 and initial impu- rity concentration C0〈10 μg.g-1, lnkeff is a linear function of 1/T. The keff values of A1, Ca, Cr, Fe, Cd and Sb in- crease with temperatures while that of Mg is almost constant. The purification is acceptable at lower temperature of melting zone such as 323 K. The variations of enthalpy and entropy between impurities and phosphorus in the liq- uid and solid ohases are also 19resented.展开更多
To predict the failure loads of adhesive joints under different stress states over the service temperature range of automobiles,adhesively bonded carbon fiber reinforced plastic( CFRP)/aluminum alloy joints under shea...To predict the failure loads of adhesive joints under different stress states over the service temperature range of automobiles,adhesively bonded carbon fiber reinforced plastic( CFRP)/aluminum alloy joints under shear stress state( thickadherend shear joints,TSJ),normal stress state( butt joints,BJ) and combined shear and normal stress states( scarf joints with scarf angle 45°,SJ45°) were manufactured and tested at-40,-20,0,20,40,60 and 80 ℃,respectively. The glass transition temperature Tgof the adhesive and CFRP,failure loads and fracture surfaces were used to analyze the failure mechanism of CFRP/aluminum alloy joints at different temperatures. A response surface,describing the variations of quadratic stress criteria with temperature,was established and introduced into the cohesive zone model( CZM) to carry out a simulation analysis. Results show that the failure of CFRP/aluminum alloy joints was determined collectively by the mechanical performances of adhesive and CFRP. Besides,reducing temperature or increasing the proportion of normal stress of adhesive layer was more likely to cause fibre tear or delamination of CFRP,resulting in a more obvious effect of CFRP. The validity of the prediction method was verified by the test of scarf joints with the scarf angle of 30°( SJ30°) and 60°( SJ60°) at-10 and 50 ℃.展开更多
The formation and evolution laws of the defect temperature field,heat dissipation in the process of defect evolution were studied.On the basis,the formation and evolution laws of the defect temperature field were inve...The formation and evolution laws of the defect temperature field,heat dissipation in the process of defect evolution were studied.On the basis,the formation and evolution laws of the defect temperature field were investigated,the interaction among defects in the process of defect evolution was carried out.The numerical simulation of the temperature field of ABS was made.The results show that the process of defect evolution is one of energy dissipation,in which the defect temperature field forms due to that its heat dissipation possesses fractal property and its fractal dimension not only relates to the interaction among the defects,but also is the function of time,this incarnates the efficiency of coordinated actions of striding over the different gradations in the process of defect evolution and among gradations.The increase of the local temperature with the increase of deformation-induced heating effect in ABS is obvious.Moreover,the shape of plastic zone and inner heat source density function has big effect on the temperature field.展开更多
基金The US Department of State for sponsoring undergraduate exchange program。
文摘Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries.
基金Under the auspices of National Natural Science Foundation of China(No.42271214,41961027)Key Program of Natural Science Foundation of Gansu Province(No.21JR7RA278,21JR7RA281)+1 种基金the CAS‘Light of West China’Program(No.2020XBZGXBQNXZ-A)Basic Research Top Talent Plan of Lanzhou Jiaotong University(No.2022JC01)。
文摘Local climate zones(LCZs)are an effective nexus linking internal urban structures to the local climate and have been widely used to study urban thermal environment.However,few studies considered how much the temperature changed due to LCZs transformation and their synergy.This paper quantified the change of urban land surface temperature(LST)in LCZs transformation process by combining the land use transfer matrix with zonal statistics method during 2000–2019 in the Xi’an metropolitan.The results show that,firstly,both LCZs and LST had significant spatiotemporal variations and synchrony.The period when the most LCZs were converted was also the LST rose the fastest,and the spatial growth of the LST coincided with the spatial expansion of the built type LCZs.Secondly,the LST difference between land cover type LCZs and built type LCZs gradually widened.And LST rose more in both built type LCZs transferred in and out.Finally,the Xi’an-Xianyang profile showed that the maximum temperature difference between the peaks and valleys of the LST increased by 4.39℃,indicating that localized high temperature phenomena and fluctuations in the urban thermal environment became more pronounced from 2000 to 2019.
基金supported by the National Key Basic Research and Development(973) Project (2009CB421001)National Natural Science Foundation of China(40872139)+2 种基金China Geological Survey (1212010661311)Ministry of Land and Resources (200811008)the Ministry of Education,Proiect 111 (B07011)
文摘The Ailaoshan-Red River(ASRR) shear zone is one of the major Southeast Asian tectonic discontinuities that have figured the present tectonic framework of the eastern Tibet.Several metamorphic massifs are distributed linearly along the shear zone,e.g.Xuelongshan,Diancangshan, Ailaoshan and Day Nui Con Voi from north to south.They bear a lot of lines of evidence for the tectonic evolution of the eastern Tibetan at different crustal levels in different tectonic stages.Controversy still exists on the deformation structures,microstructures and their relationship with metamorphisms along the ASRR.In this paper detailed microstructural and EBSD(Electron Backscattered Diffraction) fabric analysis of some highly sheared granitic rocks from different massifs along the ASRR are conducted.High temperature structures and microstructures are preserved in unsheared gneisses,in weakly sheared xenoliths or in some parts of the highly sheared rocks(mylonites).Several types of high temperature quartz c-axis fabrics show symmetrical patterns or transitions from symmetrical to asymmetrical patterns.The former are attributed to coaxial deformation during regional shortening in an early stage of the Indian-Eurasian tectonic interaction and the latter are related to the transitions from coaxial compression to noncoaxial shearing during the post-collisional ASRR left lateral shearing.
基金supported by the National Natural Science Foundation of China(31101585)the Cucurbit Vegetable Innovation Strategic Alliance Fund of Zhejiang Province,China(20101107)+1 种基金the Vegetable Innovation Group Fund of Zhejiang Province,China(2009R50026)the Zhejiang A&F University Science Development Fund,China(2009FR059)
文摘The combined effects of salinity with low root zone temperature (RZT) on plant growth and photosynthesis were studied in tomato (Solanum lycopersicum) plants. The plants were exposed to two different root zone temperatures (28/20℃, 12/8℃, day/night temperature) in combination with two NaC1 levels (0 and 100 mmol L-l). After 2 wk of treatment, K+ and Na~ concentration, leaf photosynthetic gas exchange, chlorophyll fluorescence and leaf antioxidant enzyme activities were measured. Salinity significantly decreased plant biomass, net photosynthesis rate, actual quantum yield of photosynthesis and concentration of K+, but remarkably increased the concentration of Na+. These effects were more pronounced when the salinity treatments were combined with the treatment of low RZT conditions. Either salinity or low RZT individually did not affect maximal efficiency of PSII photochemistry (Fv/Fm), while a combination of these two stresses decreased Fv/Fm considerably, indicating that the photo-damage occurred under such conditions. Non-photochemical quenching was increased by salt stress in accompany with the enhancement of the de-epoxidation state of the xanthophyll cycle, in contrast, this was not the case with low RZT applied individually. Salinity stress individually increased the activities of SOD, APX, GPOD and GR, and decreased the activities of DHAR. Due to the interactive effects of salinity with low RZT, these five enzyme activities increased sharply in the combined stressed plants. These results indicate that low RZT exacerbates the ion imbalance, PSII damage and photosynthesis inhibition in tomato plants under salinity. In response to the oxidative stress under salinity in combination with low RZT, the activities of antioxidant enzymes SOD, APX, GPOD, DHAR and GR were clearly enhanced in tomato plants.
基金supported financially by the National Basic Research Program of the People's Republic of China (2006CB403501)the National Natural Science Foundation of China(Nos 40872050,40872064)
文摘The Hongtoushan Volcanogenic Massive Sulphide Deposit(VMSD)occurs in the Hunbei granite-greenstone terrane,Liaoning Province,NE China.Rocks in the mining area have been metamorphosed around 3.0-2.8 Ga to upper amphibolite facies at temperatures between 600℃and 650℃.Cordierite-anthophyllite gneiss(CAG)in the Hongtoushan mining area,which occurs hundreds of meters below the ore horizon,corresponds to the metamorphosed semi-conformable alteration zone of the VMSD hydrothermal system,whereas the one immediately below the main ore layer represents the metamorphosed pipe-like alteration zone.Whole-rock oxygen isotope signatures were well preserved in both types of CAGs,although the mineral components have been entirely changed during regional metamorphism.Therefore,whole-rock oxygen isotopes can be used to estimate the formation temperature of both types of alteration zone.Calculations show that the semi-conformable and pipelike alteration zones for the Hongtoushan submarine hydrothermal system were formed at 290-360℃and 285-320°C,respectively,whereas estimates for the former were slightly higher than that of the latter,indicating that the semi-conformable alteration zone represents the deep part of the Hongtoushan seafloor hydrothermal system,while the pipe-like alteration zone represents the discharge conduits for metal-rich fluids,which is closer to the seafloor.
基金Project supported by the National Natural Science Foundation of China(Grant No.61964001)the Key Research and Development Program of Jiangxi Province,China(Grant No.20212BBG73012)+3 种基金the Natural Science Foundation of Jiangxi Province,China(Grant No.20192BAB207033)the Key Scientific Research Projects of Henan Higher Education Institutions,China(Grant No.22A490001)the State Key Laboratory of Particle Detection and Electronics,China(Grant No.SKLPDE-KF-2019)the Foundation of Engineering Research Center of Nuclear Technology Application(East China Institute of Technology)(Grant No.HJSJYB2021-4)。
文摘Hexagonal boron nitride(h-BN)films are synthesized by dual temperature zone low-pressure chemical vapor deposition(LPCVD)through using a single ammonia borane precursor on non-catalytic c-plane Al_(2)O_(3)substrates.The grown films are confirmed to be h-BN films by various characterization methods.Meanwhile,the growth rates and crystal quality of h-BN films at different positions in the dual temperature zone are studied.It is found that the growth rates and crystal quality of the h-BN films at different positions on the substrate are significantly different.The growth rates of the h-BN thin films show their decreasing trends with the rearward position,while the crystal quality is improved.This work provides an experimental basis for the preparation of large area wafer thick h-BN films by LPCVD.
基金Supported by National Natural Science Foundation of China(31060269)Science and Technology Planning Project of the Inner Mongolia Autonomous Region(20110710)+2 种基金Doctor Station Fund of Ministry of Education(20101515110005)Program of Research and Innovation for Graduate Students in Inner Mongolia(B20151012904Z)Science Research Project of Colleges and Universities in the Inner Mongolia Autonomous Region(NJZY060,NJZC17068)
文摘Taking Cucurbita maxima and Cucurbita moschata as root stocks,and‘Jinyou No 3'cucumber as scion,the effects of different root zone temperature conditions optimal temperature(CK)(18-20℃),suboptimal temperature(13-15℃)and low temperature(8-10℃)on the growth and photosynthesis indexes were studied.The results showed that,compared with optimal temperature(CK),suboptimal temperature and low temperature produced a significant inhibition of growth on cucumbers.The plant height,stem diameter,leaf area,number of leaves and dry weight of aboveground part were all reduced,dry weight of underground part and root shoot ratio all increased,while the inhibition was more significant at low temperature.Low and suboptimal temperature conditions also reduced SPAD value,net photosynthetic rate,transpiration rate,intercellular CO_(2) concentration and stomatal conductance of the grafted cucumber.And there were differences between different grafted seedlings,and seedlings with‘black seeds'as stock performed better than those with‘white seeds'as stock at low temperature.
文摘Soil temperature influences crop growth and quality under field and greenhouse conditions;however, precise investigation using controlled cultivation systems is largely lacking. We investigated effects of root-zone temperatures on growth and components of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red Wave) under a controlled cultivation system at 20°C. Compared with ambient root-zone temperature exposure, a 7-day low temperature exposure reduced leaf area, stem size, fresh weight, and water content of lettuce. However, root-zone heating treatments produced no significant changes in growth parameters compared with ambient conditions. Leaves under low root-zone temperature contained higher anthocyanin, phenols, sugar, and nitrate concentrations than leaves under other temperatures. Root oxygen consumption declined with low temperature root exposure, but not with root heating. Leaves of plants under low rootzone temperature showed hydrogen peroxide production, accompanied by lipid peroxidation. Therefore, low temperature root treatment is suggested to induce oxidative stress responses in leaves, activating antioxidative secondary metabolic pathways.
文摘This paper investigated the effects of root-zone (RZ) CO<sub>2</sub> concentration ([CO<sub>2</sub>]) on root morphology and growth, nitrate (NO<sub>3</sub>-</sup>) uptake and assimilation of lettuce plants at different root-zone temperatures (RZT). Elevated RZ [CO<sub>2</sub>] stimulated root development, root and shoot growth compared to ambient RZ [CO<sub>2</sub>]. The greatest increase in root growth was observed in plants grown under elevated RZ [CO<sub>2</sub>] of 50,000 ppm. However, RZ [CO<sub>2</sub>] of 10,000 ppm was sufficient to achieve the maximal leaf area and shoot productivity. Lettuce plants exhibited faster shoot and root growth at 20°C-RZT than at ambient (A)-RZT. However, under elevated RZ [CO<sub>2</sub>], the magnitude of increased growth was greater at A-RZT than at 20°C-RZT. Compared to RZ [CO<sub>2</sub>] of 360 ppm, elevated RZ [CO<sub>2</sub>] of 10,000 ppm increased NO<sub>3</sub>-</sup> accumulation and nitrate reductase activity (NRA) in both leaves and roots. NO<sub>3</sub>-</sup> concentrations of leaf and root were higher at 20°C-RZT than at A-RZT in all plants. NRA was higher in root than in leaf especially under A-RZT. The total reduced nitrogen (TRN) concentration was significantly higher in plants grown under elevated RZ [CO<sub>2</sub>] of 10,000 ppm than under ambient RZ [CO<sub>2</sub>] of 360 ppm with greater concentration in 20°C-RZT plants than in A-RZT plants. These results imply that elevated RZ [CO<sub>2</sub>] significantly affected root morphology, root and shoot growth and N metabolism of temperate lettuce with greater impacts at A-RZT than at 20°C-RZT. These findings have practical significance to vegetable production by growing the vegetable crops at cool-RZT with elevated RZ [CO<sub>2</sub>] to enhance its productivity.
文摘Arabidopsis thaliana (L.) Heyhn. is a well known model plant in plant research. However, its growth conditions and diminutive stature associated with low biomass at maturity make it a challenging species for physiological studies. While in the tropical countries, it can only be grown either by tissue cultures or in growth chambers under controlled conditions. An aeroponic technique with 20°C ± 2°C and 30°C ± 2°C root-zone temperatures (RZT) was used to grow Arabidopsis (Columbia ecotype) in a tropical greenhouse with natural irradiance and high ambient temperature (38°C/28°C day/night). Seedlings germinated in growth chambers at 20°C or 30°C. At 6 to 8 leaf stage, they were transferred to the aeroponic troughs with their roots exposed to constant temperature of 20°C ± 2°C and 30°C ± 2°C while their aerial parts were subjected to fluctuating ambient temperature from 28°C to 38°C. After a week, plants have acclimatised to both RZTs and started developing normal rosettes, bolted and yielded viable seeds. However, 20°C ± 2°C RZT allowed them to recover from turgor pressure despite of wilting, and significantly increased biomass. Mature plants grown in each RZTs were compared morphologically and physiologically to the plants grown in growth chamber (GC) at 20°C (root and shoot) temperature with 60% relative humidity. Aeroponically grown plants did not experience photoinhibition, and also exhibited higher photosynthetic light usage efficiency and higher capacities of heat dissipation, compared to GC plants. This aeroponics with cool RZTs can allow the use of Arabidopsis as a model plant even under tropical climate.
基金Sponsored by National Natural Science Foundation of China(Grant No.61433004)the Liaoning Province Doctor Startup Fund(Grant No.20141070)
文摘The calcination zone temperature control is an important problem in rotary kiln production process. In order to solve this problem,a predictive control method based on improved harmony search algorithm( IHS)and least square support vector machine( LSSVM) is proposed. LSSVM is utilized to bulid the nonlinear predictive model of calcination zone temperature in rotary kiln. The calcination zone temperature can be predicted through input control variable,the error and error correction of output feedback. The performance index function is established by deviation and control variable. An IHS algorithm with better fitness and faster convergence speed is proposed. The optimal control variable can be obtained by rolling optimization through this IHS algorithm. The stability of this predictive control method is proved to be feasible. The simulation and actual experiment results show that the proposed predictive control method has good control performance.
文摘Air and soil temperatures strongly influence the growth and quality of crops. However, in root vegetables, such as carrot, few experiments aimed at regulating growth and quality by manipulating root-zone temperature have been reported. We investigated the effect of root-zone temperatures (20°C, 25°C, 29°C, and 33°C) on carrot growth and components using a hydroponic system. High root-zone temperatures for 14 days reduced shoot and rootgrowth and water content. In contrast, total phenolic compounds and soluble-solid content increased in tap roots under high-temperature treatment. Root oxygen consumption was upregulated after 7 days under high-temperature treatment. These results suggest that high root-zone temperatures induce drought-like stress responses that modulate carrot biomass and components. High root-zone temperature treatments administered to hydroponically grown crops may be a valuable tool for improving and increasing the quality and value of crops.
文摘Using a color-tunable organic light-emitting diode (CT-OLED) can accord with the circadian cycle of humans and realize healthy lighting. The variation range of the correlated color temperature (CCT) is an important parameter to measure the performance of CT-OLEDs. In this paper, the effect of changing the utilization of phosphorescent materials and the position of the recombination zone (RZ) in the device are investigated by changing the thickness of the emissive layer (EML) and the doping ratio of the host and guest materials. The results show that reducing the red phosphorescent material and improving the blue phosphorescent material can affect the change direction of CCT, but it is not enough to expand the span of CCT (ΔCCT). It is more conducive to improving ΔCCT by more reasonable regulation of the position of the main RZ in EML and the energy transfer from the blue sub-EML to the red sub-EML. Device D obtains the best electro-optic and spectral characteristics, in which the maximum ΔCCT is 5746 K (2661 - 8407 K) as the voltage changes from 3.75 V to 9.75 V, the maximum current efficiency and luminance reach 18.34 cd·A<sup>-1</sup> and 12,100 cd·m<sup>-2</sup>, respectively.
文摘Although tropical high ambient temperature and humidity severely reduced the productivity of temperate plants, temperate vegetable crops such as lettuce have been successfully grown in Singapore by only cooling its root-zone. In this paper, a cool Meditteranean vegetable, Eruca sativa, was studied to understand how different RZTs can impact its shoot productivity, photosynthesis and nutritional quality. All plants were cultivated using aeroponic systems in a tropical greenhouse under hot ambient conditions where roots were subjected to four different root-zone temperatures (RZTs) of 20°C-RZT, 25°C-RZT, 30°C-RZT and fluctuating ambient temperatures ranged from 25°C to 38°C [25°C/38°C (ambient)]-RZT. Parameters studied include shoot fresh weight (FW), photosynthetic gas exchange, midday chlorophyll (Chl) fluorescence F<sub>v</sub>/F<sub>m</sub> ratio, Chl fluorescence photochemical quenching (qP), non-photochemical quenching (qN) and electron transport rate (ETR), total phenolic compounds and mineral content such as potassium (K), calcium (Ca), magnesium (Mg) and iron (Fe). Among the 4 different RZT treatments, E. sativa plants grown under ambient-RZT (25/38°C-RZT) had the lowest shoot and root FW while those plants grown under 20°C-RZT had highest productivity of shoot and root. However, there were no significant differences in shoot and root FW in plants grown at 25°C- and 30°C-RZT. Compared to plants grown under 25°C/38°C (ambient-RZT), light-saturated photosynthetic CO<sub>2</sub> assimilation rate (A<sub>sat</sub>) and stomatal conductance (g<sub>ssat</sub>) were similarly higher in 20°C-, 25°C- and 30°C-RZT. All plants had midday Chl fluorescence F<sub>v</sub>/F<sub>m</sub> ratio lower than <0.8 ranged from 0.785 to 0.606 with the highest and lowest ratios recorded in 20°C-RZT and ambient-RZT plants, respectively. These results indicate that cooling the RZ of E. sativa plants protected their PS II from photoinactivation during midday in the greenhouse. There were no significant differences observed in photochemical quenching (qP), non-photochemical quenching (qN) and electron transport rate among plants grown under 20°C-, 25°C- and 30°C-RZT. However, plants grown under ambient-RZT had lower qP, qN and ETR compared to all other plants. E. sativa at 20°C-RZT with the best developed roots had the highest dietary mineral (K, Mg, Ca and Fe) contents but lower total phenolics content. In contrast, ambient-RZT, plants with poorly developed roots had the lowest mineral content but highest total phenolic content. The results of this study suggest that cooling of roots is a feasible method for the cultivation of E. sativa in the tropic, which enhances the content of dietary minerals in shoots.
基金support from the Natural Sciences and Engineering Research Council of Canada(NSERC)and Rio Tinto,through the NSERC Industry Research Chair in Metallurgy of Aluminum Transformation at University of Quebec at Chicoutimi
文摘Two contents(1.5%and3%)of TiB2nanoparticles were introduced in Al?Mn?Mg3004alloy to study their effects on theelevated-temperature properties.Results show that TiB2nanoparticles were mainly distributed at the interdendritic grain boundarieswith a size range of20?80nm,which is confirmed by transmission electron microscopy(TEM)and X-ray diffraction(XRD).Therefore,the volume fraction of the dispersoid free zones is greatly reduced and the motion of grain boundaries and dislocations isinhibited more effectively at elevated temperature.After peak precipitation heat treatment,the yield strengths in the alloy with3%TiB2addition at room temperature and300°C were increased by20%and13%respectively,while the minimum creep rate at300°Cwas reduced to only1/5of the base alloy free of TiB2,exhibiting a considerable improvement of elevated-temperature properties inAl?Mn?Mg alloys.
文摘Sediment size governs advection, controlling the hydraulic conductivity of the stratum, and conduction, influencing the amount of surface area in contact between the sediment particles. To understand the role of sediment particle size on thermal profiles within the hyporheic zone, a statistical approach, involving general summary statistics and time series cross-correlation, was employed. Data were collected along two riffles: Site 1: gravel (d50 = 3.9 mm) and Site 2: sand (d50 =0.94 mm).Temperature probe grids collected 15-minute temperature data at 30, 60, 90, and140cm below the streambed surface over a 6 month period. Surface water and air temperature were recorded. Diel temperature signal penetration depth was limited to the upper 30cm of the streambed and was driven by advection. Surface seasonal trends were detected at greater depths, indicating that thermal pulses are transmitted initially by advection and by conduction to areas deeper in the hyporheic zone. Site 1 showed a high degree of thermal heterogeneity via a localized downwelling zone within a gaining stream environment. Site 2 exhibited a vertically and horizontally homogenized thermal environment attributed to an increased amount of sand sediments that limited advection and significant groundwater discharge that mediated the effects of downwelling surface water.
基金supported by the Chinese National Natural Science Foundation(40872129,40902095,40572125)special funds provided for the earthquake community science by Ministry of Science and Technology(20080811)
文摘This study attempts to acquire information on tectonic activity in western China from land surface temperature (LST) field data. On the basis of the established relationship between heat and strain, we analyzed the LSTdistribution in western China using the satellite data product MODIS/Terra. Our results show that: 1. There are departures from annual changes of LSTin some areas, and that these changes are associated with the activity of some active tectonic zones. 2. When annual-change background values caused by climate factors are removed, the long-period component (LSTLow) of temperature residual (AT) of the LSTis able to serve as an indicator for tectonic activity. We have found that a major earthquake can produce different effects on the/ST fields of surrounding areas. These effects are characterized by both rises and drops in temperature. For example, there was a noteworthy temperature decline associated with the Sumatran M9 earthquake of 2004 in the Bayan Har-Songpan block of central Tibetan Plateau. 3. On the other hand, the LST field of a single area may respond differently to major shocks occurring in different areas in the regions surrounding China. For instance, the Kun- lun M 8.1 event made the LSTon the Longmen Mountains fault zone increase, whereas the Zaisan Lake M 7.9 quake of 2003, and the Sumatran M 9 event of 2004, caused decreases in the same area's LST. 4. The variations of land surface temperature (LST) over time are different in different tectonic areas. These phenomena may provide clues for the study of tectonic deformation processes. On the basis of these phenomena, we use a combi- nation of temperature data obtained at varied depths, regional seismicity and strain results obtained with GPS measurements, to test the information related to tectonic activity derived from variations of the LST field, and discuss its implications to the creation of models of regional tectonic deformation.
文摘The present work is focused on the relationship between effective segregation coefficient keff and tem- perature of melting zone for purification of phosphorus by zone melting method. Values of keff at four temperatures of melting zone are obtained for zone pass n = 1 at travel velocity of molten zone v = 5x 10^-3 m. h^-1 and initial impu- rity concentration C0〈10 μg.g-1, lnkeff is a linear function of 1/T. The keff values of A1, Ca, Cr, Fe, Cd and Sb in- crease with temperatures while that of Mg is almost constant. The purification is acceptable at lower temperature of melting zone such as 323 K. The variations of enthalpy and entropy between impurities and phosphorus in the liq- uid and solid ohases are also 19resented.
基金The National Natural Science Foundation of China(No.51775230)
文摘To predict the failure loads of adhesive joints under different stress states over the service temperature range of automobiles,adhesively bonded carbon fiber reinforced plastic( CFRP)/aluminum alloy joints under shear stress state( thickadherend shear joints,TSJ),normal stress state( butt joints,BJ) and combined shear and normal stress states( scarf joints with scarf angle 45°,SJ45°) were manufactured and tested at-40,-20,0,20,40,60 and 80 ℃,respectively. The glass transition temperature Tgof the adhesive and CFRP,failure loads and fracture surfaces were used to analyze the failure mechanism of CFRP/aluminum alloy joints at different temperatures. A response surface,describing the variations of quadratic stress criteria with temperature,was established and introduced into the cohesive zone model( CZM) to carry out a simulation analysis. Results show that the failure of CFRP/aluminum alloy joints was determined collectively by the mechanical performances of adhesive and CFRP. Besides,reducing temperature or increasing the proportion of normal stress of adhesive layer was more likely to cause fibre tear or delamination of CFRP,resulting in a more obvious effect of CFRP. The validity of the prediction method was verified by the test of scarf joints with the scarf angle of 30°( SJ30°) and 60°( SJ60°) at-10 and 50 ℃.
基金Project(10372074) supported by the National Natural Science Foundation of China
文摘The formation and evolution laws of the defect temperature field,heat dissipation in the process of defect evolution were studied.On the basis,the formation and evolution laws of the defect temperature field were investigated,the interaction among defects in the process of defect evolution was carried out.The numerical simulation of the temperature field of ABS was made.The results show that the process of defect evolution is one of energy dissipation,in which the defect temperature field forms due to that its heat dissipation possesses fractal property and its fractal dimension not only relates to the interaction among the defects,but also is the function of time,this incarnates the efficiency of coordinated actions of striding over the different gradations in the process of defect evolution and among gradations.The increase of the local temperature with the increase of deformation-induced heating effect in ABS is obvious.Moreover,the shape of plastic zone and inner heat source density function has big effect on the temperature field.