We investigate theoretically the temperature effects on the evolution and stability of a separate screening brightdark soliton pair formed in a serial non-photovoltaic photorefractive crystal circuit. Our numerical re...We investigate theoretically the temperature effects on the evolution and stability of a separate screening brightdark soliton pair formed in a serial non-photovoltaic photorefractive crystal circuit. Our numerical results show that, for a stable bright-dark soliton pair originally formed in a crystal circuit at given temperatures, when one crystal temperature changes, the soliton supported by the other crystal will evolve into another stable soliton if the temperature change is quite small, whereas it will become unstable and experience larger cycles of compression or break up into beam filaments if the temperature difference is big enough. The dark soliton is more sensitive to the temperature change than the bright one.展开更多
The thermal stability of the soliton excited in the protein molecular system which work at finite temperature and a nonlinear vibration of the molecular chain have beed studied in our theory. The results obtained show...The thermal stability of the soliton excited in the protein molecular system which work at finite temperature and a nonlinear vibration of the molecular chain have beed studied in our theory. The results obtained show that the soliton moves in supersonic velocity and the amplitude of soliton depends on the temperature and the strengthen of nonlinear vibration. but the soliton excited is thermal stable in the case of the physiologic temperature 310K.展开更多
The temporal property of grey screening spatial solitons due to two-photon photorefractive effect in lowamplitude regime is analyzed. The results indicate that a broad solitons is generated at the beginning, and as ti...The temporal property of grey screening spatial solitons due to two-photon photorefractive effect in lowamplitude regime is analyzed. The results indicate that a broad solitons is generated at the beginning, and as time evolves, the intensity width of grey solitons decreases monotonically to a minimum value toward steady state. In the same propagation time, the FWHM of solitons decreases with p increasing or m decreasing. Moreover, the formation time of solitons is independent of p and m. The time is close to a constant determined by the dielectric relaxation time.展开更多
This paper predicts that grey spatial solitons can exist in two-photon photorefractive materials. In steady state and undcr appropriate external bias conditions, it obtains the grey spatial soliton solutions of the op...This paper predicts that grey spatial solitons can exist in two-photon photorefractive materials. In steady state and undcr appropriate external bias conditions, it obtains the grey spatial soliton solutions of the optical wave evolution equation. The intensity profile, phase distribution, and transverse velocity of these grey solitons are discussed.展开更多
In a biased dissipative photovoltaic-photorefractive system, this paper investigates the temperature effect on the evolution and the self-deflection of the dissipative holographic screening-photovoltaic (DHSP) solit...In a biased dissipative photovoltaic-photorefractive system, this paper investigates the temperature effect on the evolution and the self-deflection of the dissipative holographic screening-photovoltaic (DHSP) solitons. The results reveal that, the evolution and the self-deflection of the bright and dark DHSP solitons are influenced by the system temperature. At a given temperature, for a stable DHSP soliton originally formed in the dissipative system, it attempts to evolve into another DHSP soliton when the temperature change is appropriately small, whereas it will become unstable or break down if the temperature departure is large enough. Moreover, the self-deflection degree of the solitary beam centre increases as temperature rises in some range, while it is decided by the system parameters and is slight under small-signal condition. The system temperature can be adjusted to change the formation and the self-deflection of the solitary beam in order to gain certain optical ends. In a word, the system temperature plays a role for the DHSP solitons in the dissipative system.展开更多
Based on the theory of one-dimensional separate soliton pairs formed in a serial photorefractive crystal circuit, we investigated the temperature effects of the dark soliton on the self-deflection of the bright solito...Based on the theory of one-dimensional separate soliton pairs formed in a serial photorefractive crystal circuit, we investigated the temperature effects of the dark soliton on the self-deflection of the bright soliton in a bright-dark soliton pair. The numerical results obtained by solving the nonlinear propaga-tion equation showed that the bright soliton moves on a parabolic trajectory in the crystal and its spa-tial shift changed with the temperature of the dark soliton. The higher the temperature of the dark soli-ton was, the smaller the spatial shift of the bright soliton was. The self-bending process was further studied by the perturbation technique, and the results were found to be in good agreement with that obtained by the numerical method.展开更多
The temperature effects on the evolution and self-deflection of bright spatial optical solitons in photo-voltaic photorefractive media were investigated by taking into account diffusion effects. The numerical results ...The temperature effects on the evolution and self-deflection of bright spatial optical solitons in photo-voltaic photorefractive media were investigated by taking into account diffusion effects. The numerical results show that the evolution of the bright solitary beam depends strongly on the crystal temperature. It is also found that the bending distance of the bright solitary beam centre increases and reaches its maximum value at a characteristic temperature, and then decreases as temperature rises and ap-proaches zero at low and high temperatures. Both the maximum value and characteristic temperature increase with the input power density. The self-deflection of bright solitary beam is further studied by a perturbation technique, and the results are found to be in good agreement with that obtained by the numerical method. The diffusion process and the dark irradiance dominate the temperature depend-ence of bending distance in most values of temperature besides at the characteristic temperature and in the higher temperature regime. The diffusion process will mainly dominate the temperature dependence at the characteristic temperature and the dark irradiance will dominate in the higher tem-perature range.展开更多
We present a theoretical study of the one-dimensional modulational instability of a broad optical beam propagating in a biased photorefractive crystal with both linear and quadratic electro-optic effects(Kerr effect)u...We present a theoretical study of the one-dimensional modulational instability of a broad optical beam propagating in a biased photorefractive crystal with both linear and quadratic electro-optic effects(Kerr effect)under steadystate conditions.One-dimensional modulational instability growth rates are obtained by treating the space-charge field equation globally and locally.Both theoretical reasoning and numerical simulation show that both the global and local modulational instability gains are governed simultaneously by the strength and the polarity of external bias field and by the ratio of the intensity of the broad beam to that of the dark irradiance.Under a strong bias field,the results obtained using these two methods are in good agreement in the low spatial frequency regime.Moreover,the instability growth rate increases with the bias field,and the maximum instability growth occurs when ratio of light intensity to dark irradiance is 0.88.展开更多
以山东和福建为研究区,基于气象站气候观测数据及ERA5-land再分析数据,采用变化趋势分析、观测减再分析(Observation Minus Reanalysis,OMR)和对比分析等方法,在区域尺度上探讨不同气候背景下城市化引起的局地升温差异。结果表明,1987—...以山东和福建为研究区,基于气象站气候观测数据及ERA5-land再分析数据,采用变化趋势分析、观测减再分析(Observation Minus Reanalysis,OMR)和对比分析等方法,在区域尺度上探讨不同气候背景下城市化引起的局地升温差异。结果表明,1987—2017年山东省台站年平均气温平均变化率略高于福建省,分别为0.38℃·(10a)^(-1)和0.33℃·(10a)^(-1),但两省各季节气温变化趋势存在很大差异。城市化对山东省年和各季节T_(mean)变化的影响均大于福建省,北方相对干旱且较长的日照时间更利于城市热岛形成,这是导致上述差异的重要原因。此外,城市化对两省秋、冬季节T_(mean)变化的影响较春、夏季节更大,这与秋、冬季节相对干旱且静稳的气候特征有关。山东省城市化升温幅度的季节性差异较福建省大,可能与北方地区季节气候波动更大有关。展开更多
The incoherent interaction between solitons with different transverse dimensions in a noncentrosymmetric photorefractive crystal is studied both in theory and in experiment. An anomalous incoherent interaction between...The incoherent interaction between solitons with different transverse dimensions in a noncentrosymmetric photorefractive crystal is studied both in theory and in experiment. An anomalous incoherent interaction between one- and two-dimensional solitons, whose attractive and repulsive effects depend on the soliton separation, is numerically demonstrated by employing an anisotropic model. By launching a one-dimensional green beam and a two-dimensional red beam into a biased SBN:60 crystal, the hybrid-dimensional soliton interaction is performed. The experimental results are in good agreement with the numerical ones.展开更多
The seasonal and interannual variations of Beijing urban heat island (UHI) are investigated in this paper using the temperature data from 1960 to 2000 at 20 meteorological stations in the Beijing region, and then the ...The seasonal and interannual variations of Beijing urban heat island (UHI) are investigated in this paper using the temperature data from 1960 to 2000 at 20 meteorological stations in the Beijing region, and then the relationship between the intensity and spatial scale of UHI and Beijing urbanization indices is analyzed and discussed. Main conclusions are the followings. First, Beijing UHI shows obvious seasonal variations, and it is strongest in winter, next in spring and autumn, and least in summer. The seasonal variation of the UHI mainly occurs in the urban area. The UHI intensity at the center of Beijing is more than 0.8℃ in winter, and only 0.5℃ in summer. Second, the intensity of Beijing HUI exhibits a clear interannual warming trend with its mean growth rate (MGR) being 0.3088℃/10 a. The MGR of HUI is largest in winter, next in spring and autumn, and least in summer, and the urban temperature increase makes a major contribution to the growth of HUI intensity. Third, since the Reform and Opening, the urbanization indices have grown several ten times or even one hundred times, the intensity of HUI has increased dramatically, and its spatial scale also expanded distinctively along with the expansion of urban architectural complexes. Fourth, the interannual variation of urbanization indices is very similar with that of HUI intensity, and their linear correlation coefficients are significant at a more than 0.001 confidence level.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574051 and 10174025) and the Research Foundation for 0utstanding Young Teachers, China University of Geosciences (Grant No CUGQNL0621).
文摘We investigate theoretically the temperature effects on the evolution and stability of a separate screening brightdark soliton pair formed in a serial non-photovoltaic photorefractive crystal circuit. Our numerical results show that, for a stable bright-dark soliton pair originally formed in a crystal circuit at given temperatures, when one crystal temperature changes, the soliton supported by the other crystal will evolve into another stable soliton if the temperature change is quite small, whereas it will become unstable and experience larger cycles of compression or break up into beam filaments if the temperature difference is big enough. The dark soliton is more sensitive to the temperature change than the bright one.
文摘The thermal stability of the soliton excited in the protein molecular system which work at finite temperature and a nonlinear vibration of the molecular chain have beed studied in our theory. The results obtained show that the soliton moves in supersonic velocity and the amplitude of soliton depends on the temperature and the strengthen of nonlinear vibration. but the soliton excited is thermal stable in the case of the physiologic temperature 310K.
基金Supported by the Science and Technology Development Foundation of Higher Education of Shanxi Province under Grant No.200611042 Basic Research Foundation of Yuncheng University under Grant No.JC-2009003
文摘The temporal property of grey screening spatial solitons due to two-photon photorefractive effect in lowamplitude regime is analyzed. The results indicate that a broad solitons is generated at the beginning, and as time evolves, the intensity width of grey solitons decreases monotonically to a minimum value toward steady state. In the same propagation time, the FWHM of solitons decreases with p increasing or m decreasing. Moreover, the formation time of solitons is independent of p and m. The time is close to a constant determined by the dielectric relaxation time.
基金Project supported by the National Natural Science Foundation of China (Grant No 60508005), and Scientific Research Foundation of Harbin Institute of Technology of China (Grant No HIT. 2003. 31).
文摘This paper predicts that grey spatial solitons can exist in two-photon photorefractive materials. In steady state and undcr appropriate external bias conditions, it obtains the grey spatial soliton solutions of the optical wave evolution equation. The intensity profile, phase distribution, and transverse velocity of these grey solitons are discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574051 and 10174025)
文摘In a biased dissipative photovoltaic-photorefractive system, this paper investigates the temperature effect on the evolution and the self-deflection of the dissipative holographic screening-photovoltaic (DHSP) solitons. The results reveal that, the evolution and the self-deflection of the bright and dark DHSP solitons are influenced by the system temperature. At a given temperature, for a stable DHSP soliton originally formed in the dissipative system, it attempts to evolve into another DHSP soliton when the temperature change is appropriately small, whereas it will become unstable or break down if the temperature departure is large enough. Moreover, the self-deflection degree of the solitary beam centre increases as temperature rises in some range, while it is decided by the system parameters and is slight under small-signal condition. The system temperature can be adjusted to change the formation and the self-deflection of the solitary beam in order to gain certain optical ends. In a word, the system temperature plays a role for the DHSP solitons in the dissipative system.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10574051 and 10174025) the Research Foundation for Outstanding Young Teachers, China University of Geosciences (Wuhan) (Grant No. CUGQNL0621)
文摘Based on the theory of one-dimensional separate soliton pairs formed in a serial photorefractive crystal circuit, we investigated the temperature effects of the dark soliton on the self-deflection of the bright soliton in a bright-dark soliton pair. The numerical results obtained by solving the nonlinear propaga-tion equation showed that the bright soliton moves on a parabolic trajectory in the crystal and its spa-tial shift changed with the temperature of the dark soliton. The higher the temperature of the dark soli-ton was, the smaller the spatial shift of the bright soliton was. The self-bending process was further studied by the perturbation technique, and the results were found to be in good agreement with that obtained by the numerical method.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10574051, 10174025)Natural Science Foundation of Hubei Province (Grant No. 2008CDB005)Research Foundation for Outstanding Young Teachers, China University of Geosciences (Wuhan)
文摘The temperature effects on the evolution and self-deflection of bright spatial optical solitons in photo-voltaic photorefractive media were investigated by taking into account diffusion effects. The numerical results show that the evolution of the bright solitary beam depends strongly on the crystal temperature. It is also found that the bending distance of the bright solitary beam centre increases and reaches its maximum value at a characteristic temperature, and then decreases as temperature rises and ap-proaches zero at low and high temperatures. Both the maximum value and characteristic temperature increase with the input power density. The self-deflection of bright solitary beam is further studied by a perturbation technique, and the results are found to be in good agreement with that obtained by the numerical method. The diffusion process and the dark irradiance dominate the temperature depend-ence of bending distance in most values of temperature besides at the characteristic temperature and in the higher temperature regime. The diffusion process will mainly dominate the temperature dependence at the characteristic temperature and the dark irradiance will dominate in the higher tem-perature range.
文摘We present a theoretical study of the one-dimensional modulational instability of a broad optical beam propagating in a biased photorefractive crystal with both linear and quadratic electro-optic effects(Kerr effect)under steadystate conditions.One-dimensional modulational instability growth rates are obtained by treating the space-charge field equation globally and locally.Both theoretical reasoning and numerical simulation show that both the global and local modulational instability gains are governed simultaneously by the strength and the polarity of external bias field and by the ratio of the intensity of the broad beam to that of the dark irradiance.Under a strong bias field,the results obtained using these two methods are in good agreement in the low spatial frequency regime.Moreover,the instability growth rate increases with the bias field,and the maximum instability growth occurs when ratio of light intensity to dark irradiance is 0.88.
文摘以山东和福建为研究区,基于气象站气候观测数据及ERA5-land再分析数据,采用变化趋势分析、观测减再分析(Observation Minus Reanalysis,OMR)和对比分析等方法,在区域尺度上探讨不同气候背景下城市化引起的局地升温差异。结果表明,1987—2017年山东省台站年平均气温平均变化率略高于福建省,分别为0.38℃·(10a)^(-1)和0.33℃·(10a)^(-1),但两省各季节气温变化趋势存在很大差异。城市化对山东省年和各季节T_(mean)变化的影响均大于福建省,北方相对干旱且较长的日照时间更利于城市热岛形成,这是导致上述差异的重要原因。此外,城市化对两省秋、冬季节T_(mean)变化的影响较春、夏季节更大,这与秋、冬季节相对干旱且静稳的气候特征有关。山东省城市化升温幅度的季节性差异较福建省大,可能与北方地区季节气候波动更大有关。
基金Project supported by the Doctoral Science Foundation of Northwestern Polytechnical University (NPU),China (Grant No. CX200514)the NPU Foundation for Fundamental Research,China
文摘The incoherent interaction between solitons with different transverse dimensions in a noncentrosymmetric photorefractive crystal is studied both in theory and in experiment. An anomalous incoherent interaction between one- and two-dimensional solitons, whose attractive and repulsive effects depend on the soliton separation, is numerically demonstrated by employing an anisotropic model. By launching a one-dimensional green beam and a two-dimensional red beam into a biased SBN:60 crystal, the hybrid-dimensional soliton interaction is performed. The experimental results are in good agreement with the numerical ones.
文摘The seasonal and interannual variations of Beijing urban heat island (UHI) are investigated in this paper using the temperature data from 1960 to 2000 at 20 meteorological stations in the Beijing region, and then the relationship between the intensity and spatial scale of UHI and Beijing urbanization indices is analyzed and discussed. Main conclusions are the followings. First, Beijing UHI shows obvious seasonal variations, and it is strongest in winter, next in spring and autumn, and least in summer. The seasonal variation of the UHI mainly occurs in the urban area. The UHI intensity at the center of Beijing is more than 0.8℃ in winter, and only 0.5℃ in summer. Second, the intensity of Beijing HUI exhibits a clear interannual warming trend with its mean growth rate (MGR) being 0.3088℃/10 a. The MGR of HUI is largest in winter, next in spring and autumn, and least in summer, and the urban temperature increase makes a major contribution to the growth of HUI intensity. Third, since the Reform and Opening, the urbanization indices have grown several ten times or even one hundred times, the intensity of HUI has increased dramatically, and its spatial scale also expanded distinctively along with the expansion of urban architectural complexes. Fourth, the interannual variation of urbanization indices is very similar with that of HUI intensity, and their linear correlation coefficients are significant at a more than 0.001 confidence level.