The microwave radiometer (MRM) onboard the Chang' E-1 (CE-I) lu- nar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from whi...The microwave radiometer (MRM) onboard the Chang' E-1 (CE-I) lu- nar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from which the thickness, temperature, dielectric constant and other related properties of the lunar regolith can be derived. The working mode of the CE-1 MRM, the ground calibration (including the official calibration coefficients), as well as the acquisition and processing of the raw data are introduced. Our data analysis shows that TB increases with increasing frequency, decreases towards the lunar poles and is significantly affected by solar illumination. Our analysis also reveals that the main uncertainty in TB comes from ground calibration.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11173038)
文摘The microwave radiometer (MRM) onboard the Chang' E-1 (CE-I) lu- nar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from which the thickness, temperature, dielectric constant and other related properties of the lunar regolith can be derived. The working mode of the CE-1 MRM, the ground calibration (including the official calibration coefficients), as well as the acquisition and processing of the raw data are introduced. Our data analysis shows that TB increases with increasing frequency, decreases towards the lunar poles and is significantly affected by solar illumination. Our analysis also reveals that the main uncertainty in TB comes from ground calibration.