The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous ...The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous Al2O3 scale was formed and owned excellent oxidation resistance in the temperature range of 900-1100°C.When the temperature was up to 1150°C,the continuous Al2O3 oxide film ruptured.Trace rare earth element Ho distributed uniformly in the alloy and relatively high level of Al in Cr(Mo)phase are beneficial to the formation of continuous and compact Al2O3 scale.During the oxidation,a phase transformation fromθ-Al2O3 toα-Al2O3 existed on the surface of oxidation film.It resulted in the abnormal oxidation mass gain happening when the alloy was oxidized at 1000°C or 1050°C.展开更多
Fe-Al-Ta eutectic composites with solidification rates of 6,20,30,80 and 200μm/s were obtained by a modified Bridgman directional solidification technique and alloying.Moreover,tensile property and fracture behavior ...Fe-Al-Ta eutectic composites with solidification rates of 6,20,30,80 and 200μm/s were obtained by a modified Bridgman directional solidification technique and alloying.Moreover,tensile property and fracture behavior of Fe-Al-Ta eutectic composites were studied at 600℃.The relationship between mechanical property and microstructure at high temperature was studied.Microstructure of Fe-Al-Ta eutectic is composed of Fe_(2)Ta(Al)Laves phase and Fe(Al,Ta)matrix phase.In addition,the tensile strength at high temperatures is higher than that at room temperature.The tensile strength is increased with the increase of solidification rate.Moreover,fracture morphology transforms from cleavage fracture to dimple fracture as the solidification rate is increased at high temperatures.展开更多
The main objective of this work was to use reline deep eutectic solvent,containing Al(III)ions,for the electrochemical study of the nucleation and growth of aluminum onto a glassy carbon electrode at different tempera...The main objective of this work was to use reline deep eutectic solvent,containing Al(III)ions,for the electrochemical study of the nucleation and growth of aluminum onto a glassy carbon electrode at different temperatures and angular speeds(ω)of the working electrode.In order to fulfill this,electrochemical and surface characterization techniques were used.It was found that as temperature increased,the onset of the Al(III)DES reduction occurred at less negative potentials while the current peak of the voltammograms increased.These indicate that Al deposition thermodynamics and kinetics were favored.Practically,no anodic current was detected due to Al passivation by Al(OH)_(3)(s)andγ-Al_(2)O_(3)(s).Atω=0 r/min,the Al deposition chronoamperograms were analyzed by a theoretical model comprising Al 3D diffusion-controlled nucleation and growth and residual water reduction.However,those recorded at different angular speeds were analyzed with a theoretical model where adsorption−desorption and diffusion-controlled nucleation−growth occurred simultaneously.The deposits were characterized by SEM,EDX,XPS and XRD.Atω=0 r/min,formation of well distributed nanoparticles((78.1±9.5)nm)was observed,while atω=900 r/min the deposit was formed by multiple 10μm diameter leaf-like flat microstructures,composed by Al,Al(OH)_(3)(s)andγ-A2O3(s).展开更多
The high-temperature tensile fracture behavior of the Ni, Cr, Al-TaC eutectic superal-loy directionally solidified under high temperature gradient is investigated. The high-temperature tensile fracture of this in situ...The high-temperature tensile fracture behavior of the Ni, Cr, Al-TaC eutectic superal-loy directionally solidified under high temperature gradient is investigated. The high-temperature tensile fracture of this in situ composite has ductile character with lots of ductile nests whose diameters decrease with the increasing solidification rates. The maximum σb and δ are respectively 668.5MPa and 19.6%. There is α TaC whisker in the center of each nest, and the deformation of γ' and TaC is uneven. The high-temperature tensile behavior cannot be explained by the rule of mixtures but is decided by the formation of the plastic deformation band. The crack extension model is given.展开更多
At present,it is believed that the freezing point temperature of seawater is a function of salinity and pressure,and the freezing point is a key parameter in a coupled air-sea-ice system.Generally,empirical formulas o...At present,it is believed that the freezing point temperature of seawater is a function of salinity and pressure,and the freezing point is a key parameter in a coupled air-sea-ice system.Generally,empirical formulas or methods are used to calculate the freezing point of seawater.Especially in high-pressure situations,e.g.,under a thick ice sheet or ice shelf,the pressure term must be taken into account in the determination of seawater freezing point temperature.This study summarized various methods that have been used to calculate seawater freezing point with high pressure.The methods that were employed in two ocean-ice models were also assessed.We identified the disadvantages of these methods used in these two models and addressed the corresponding uncertainties of the freezing point temperature formulas.This study provides useful information on the calculation of the freezing point temperature in numerical modeling and indicates a need to investigate the sensitivity of numerical simulations to the uncertainties in the freezing point temperature in future.展开更多
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied in the detection of the end point temperature (EPT) of thermal denatured protein in fish and meat in this study. It was also used in stu...Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied in the detection of the end point temperature (EPT) of thermal denatured protein in fish and meat in this study. It was also used in studying the thermal denatured temperature range of proteins in salmon and chicken meat. The results show that the temperature ranges of denatured proteins were from 65 ℃ to 75 ℃ , and these temperature ranges were influenced by the processing methods. Through SDS-PAGE, the features of repeated heating thermal denatured proteins under the same temperature and processing time were studied. The electrophoresis patterns of thermal denatured proteins determined through repeated heating at the same temperature did not exhibit any change. For the detection of cooked fish and meat samples, they were subjected to applying the SDS-PAGE method, which revealed an EPT ranging from 60 ℃ to 80 ℃ .展开更多
A further understanding of the self-heating of coal was obtained by investigating the crossing point temperature(CPT) of different ranks of coal.The tests were carried out using a self-designed experimental system f...A further understanding of the self-heating of coal was obtained by investigating the crossing point temperature(CPT) of different ranks of coal.The tests were carried out using a self-designed experimental system for coal self-heating.50 g(±0.01 g) of coal particles ranging from 0.18 mm to 0.38 mm in size were put into a pure copper reaction vessel attached to the center of a temperature programmed enclosure.The temperature program increased the temperature at a rate of 0.8℃/min.Dry air was permitted to flow into the coal reaction vessel at different rates.The surrounding temperature and the coal temperature were monitored by a temperature logger.The results indicate that CPT is affected by coal rank,moisture,sulfur, and the experimental conditions.Higher ranked coals show higher CPT values.A high moisture content causes a delay phenomenon during the self-heating of the coal.Drying at 40℃decreases the effects of moisture.The reactivity of sulfur components in the coal is low under dry and low-temperature conditions. These components form a film that covers the coal surface and slightly inhibits the self-heating of the coal. The flow rate of dry air,and the heating rate of the surroundings,also affect the self-heating of the coal.The most appropriate experimental conditions for coal samples of a given weight and particle size were determined through contrastive analysis.Based on this analysis we propose that CPTs be determined under the same,or nearly the same conditions,for evaluation of the spontaneous combustion of coal.展开更多
This paper aims to detect the short-term as well as long-term change point in the surface air temperature time series for Asansol weather observation station, West Bengal, India. Temperature data for the period from 1...This paper aims to detect the short-term as well as long-term change point in the surface air temperature time series for Asansol weather observation station, West Bengal, India. Temperature data for the period from 1941 to 2010 of the said weather observatory have been collected from Indian Meteorological Department, Kolkata. Variations and trends of annual mean temperature, annual mean maximum temperature and annual minimum temperature time series were examined. The cumulative sum charts (CUSUM) and bootstrapping were used for the detection of abrupt changes in the time series data set. Statistically significant abrupt changes and trends have been detected. The major change point in the annual mean temperatures occurred around 1986 (0.57°C) at the period of 25 years in the long-term regional scale. On the other side, the annual mean maximum and annual mean minimum temperatures have distinct change points at level 1. There are abrupt changes in the year 1961 (Confidence interval 1961, 1963) for the annual mean maximum and 1994 (Confidence interval 1993, 1996) for the annual mean minimum temperatures at a confidence level of 100% and 98%, respectively. Before the change, the annual mean maximum and annual mean minimum temperatures were 30.90°C and 23.99°C, respectively, while after the change, the temperatures became 33.93°C and 24.84°C, respectively. Over the entire period of consideration (1941-2010), 11 forward and backward changes were found in total. Out of 11, there are 3 changes (1961, 1986 and 2001) in annual mean temperatures, 4 changes (1957, 1961, 1980 and 1994) in annual mean maximum temperatures, and rest 4 changes (1968, 1981, 1994 and 2001) are associated with annual mean minimum temperature data set.展开更多
The high-temperature mechanical properties of near-eutectoid steel were studied with a Cleeble-1500 simu- lation machine. Zero strength temperature (ZST), zero ductility temperature (ZDT), hot ductility curves, an...The high-temperature mechanical properties of near-eutectoid steel were studied with a Cleeble-1500 simu- lation machine. Zero strength temperature (ZST), zero ductility temperature (ZDT), hot ductility curves, and strength curves were measured. Two brittle zones and one plastic zone were found in the temperature range from the melting point to 600℃. Embrittlement in zone I is caused by the existence of liquid film along dendritic interfaces. Ductility loss in zone Ⅲ mainly results from precipitates and inclusions as well as S segregation along grain boundaries. Pearlite transformation also accounts for ductility deterioration in the temperature range of 700-600℃. Moreover, the straightening temperature of the test steel should be higher than 925℃ for avoiding the initiation and propagation of surface cracks in billets.展开更多
The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requiremen...The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requirements for battery systems.The high-energy lithium batteries are expected to respond or react under different environmental conditions.In this work,a tri-salt composite electrolyte is designed with a temperature switch function for intelligently temperature-controlled lithium batteries.Specifically,the halide Li_(3)YBr_(6)together with LiTFSI and LiNO_(3)works as active fillers in a low-melting-point polymer matrix(polyethyleneglycol dimethyl ether(PEGDME)and polyethylene oxide(PEO)),which is further filled into the pre-lithiated alumina fiber skeleton.Above 60°C,the composite electrolyte exists in the liquid state and fully contacts with the working electrodes on the liquid–solid interface,effectively minimizing the interfacial resistance and leading to high discharge capacity in the cell.The electrolyte is changed into a solid state below 30°C so that the ionic conductivity is significantly reduced and the interface resistance is increased dramatically on the solid–solid interface.Therefore,by simply adjusting the temperature,the cell can be turned“ON”or“OFF”intentionally.This novel function of the composite electrolyte has enlightening significance in developing intelligently temperature-controlled lithium batteries.展开更多
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
Researches are being carried out world-wide to understand the nature of temperature change during recent past at different geographical scales so that comprehensive inferences can be drawn about recent temperature tre...Researches are being carried out world-wide to understand the nature of temperature change during recent past at different geographical scales so that comprehensive inferences can be drawn about recent temperature trend and future climate. Detection of turning points in time series of meteorological parameters puts challenges to the researches. In this work, the temperature time series from 1941 to 2010 for Asansol observatory, West Bengal, India, has been considered to understand the nature, trends and change points in the data set using sequential version of Mann-Kendall test statistic. Literatures suggest that use of this test statistic is the most appropriate for detecting climatic abrupt changes as compared to other statistical tests in use. This method has been employed upon monthly average temperatures recorded over the said 70 years for detection of abrupt changes in the average temperature of each of the months. The approximate potential trend turning points have been calculated separately for each month (January to December). Sequential version of Mann-Kendall test statistic values for the months of July and August is significant at 95% confidence level (p 0.05). The average temperature for most of the other months has shown an increasing trend but more significant rise in July and August temperature has been recognized since 1960s.展开更多
Accurate estimation of dew point temperature(Tdew)plays a very important role in the fields of water resource management,agricultural engineering,climatology and energy utilization.However,there are few studies on the...Accurate estimation of dew point temperature(Tdew)plays a very important role in the fields of water resource management,agricultural engineering,climatology and energy utilization.However,there are few studies on the applicability of local Tdew algorithms at regional scales.This study evaluated the performance of a new machine learning algorithm,i.e.,gradient boosting on decision trees with categorical features support(Cat Boost)to estimate daily Tdew using limited local and cross-station meteorological data.The random forests(RF)algorithm was also assessed for comparison.Daily meteorological data from 2016 to 2019,including maximum,minimum and average temperature(Tmax,Tmin and Tmean),maximum,minimum and average relative humidity(RHmax,RHmin and RHmean),maximum,minimum and average global solar radiation(Rsmax,Rsmin and Rsmean)from three weather stations in Hunan of China were used to evaluate the CatBoost and RF algorithms.The results showed that both algorithms achieved satisfactory estimation accuracy at the target stations(on average RMSE=1.020℃,R^(2)=0.969,MAE=0.718℃and NRMSE=0.087)in the absence of complete meteorological parameters(with only temperature data as input).The Cat Boost algorithm(on average RMSE=1.900℃and R^(2)=0.835)was better than the RF algorithm(on average RMSE=2.214℃andR^(2)=0.828).The accuracy and stability of the CatBoost and RF algorithms were positively correlated with the number of input parameters,and the three-parameter algorithms achieved higher estimation accuracy than the two-parameter algorithms.The developed methodology is helpful to predict Tdew at regional scale.展开更多
In this paper, in order to investigate the viscoelasticity of asphalt binder at the softening point temperature, more than 30 different asphalt binders were selected and tested by dynamic rheological scan method using...In this paper, in order to investigate the viscoelasticity of asphalt binder at the softening point temperature, more than 30 different asphalt binders were selected and tested by dynamic rheological scan method using a dynamic shear rheometer(DSR). The softening points and the rheological parameters of the asphalt samples were measured and analyzed. The results indicated that at the softening point temperature the neat asphalt and the SBS modified asphalt showed two different rheological states. The neat asphalt binders had a majority of viscous components in viscoelastic composition, with the phase angles being mostly higher than 80 o. The SBS modified binders had lower phase angles, with their elasticity still retained. Meanwhile, the Shapiro-Wilk normality test showed that at a confidence level of 0.05, at whatever aging state, the neat asphalt had a stable complex modulus corresponding to the softening point, which was 13.034 kPa at a standard deviation of 2.105 kPa under the same test condition. The softening point of neat asphalt binder can be calculated via the equivalent modulus rule. It is found out that there is a good relationship between the calculated and the measured softening points. And it is suggested that more data are needed to validate this finding.展开更多
It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentra...It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentration solar cells and are used in light concentration photovoltaic systems (<i><span style="font-family:Verdana;">CPV</span></i><span style="font-family:Verdana;">). In fact, the significant heating of these solar cells is due to the concentration of the solar flux which arrives on them. Light concentration solar cells appear as solar cells under strong influences of heating and temperature. It is therefore necessary to take into account temperature effect on light concentration solar cells performances in order to obtain realistic results. </span><span style="font-family:""><span style="font-family:Verdana;">This one-dimensional study of a crystalline silicon solar cell under light concentration takes into account electrons concentration gradient electric field in the determination of the continuity equation of minority carriers in the base. To determine excess minority carrier’s density, the effects of temperature on the diffusion and mobility of electrons and holes, on the intrinsic concentration of electrons, on carrier’s generation rate as well as on width of band gap have also been taken into account. The results show that an increase of temperature improves diffusion parameters and leads to an increase of the short-circuit photocurrent density. However, an increase of temperature leads to a significant decrease in open-circuit photovoltage, maximum electric power and conversion efficiency. The results also show that the operating point and the maximum power point (</span><i><span style="font-family:Verdana;">MPP</span></i><span style="font-family:Verdana;">) moves to the open circuit when the cell temperature increases.</span></span>展开更多
Pour point depressants (PPD) are used to improve the theology of waxy crude. The affect of various factors on the theological properties, and the thermal characteristics of waxy crude treated by PPD have been invest...Pour point depressants (PPD) are used to improve the theology of waxy crude. The affect of various factors on the theological properties, and the thermal characteristics of waxy crude treated by PPD have been investigated. The conclusions are as follows: PPD can reduce the pour point and abnormal point of waxy crude, broaden the temperature range of Newtonian fluid of waxy crude, and lower greatly the viscosity of non-Newtonian fluid of waxy crude. The influence of reheating and high-rate shear on the effect of PPD mainly depends on their temperature. When the reheating temperature is more than the abnormal point of crude by 10℃, the reheating process has little effect on the modification effect of PPD. However, when the reheating temperature is below the abnormal point of crude, the reheating process will reduce the modification effect of PPD. When temperature is above the abnormal point of crude, the high-rate shear has little effect on the modification effect of PPD. At a temperature range where a lot of wax is precipitating, high-rate shear will greatly reduce the modification effect of PPD.展开更多
Laser spot thermography is a novel technique for the detection of surface cracks with a laser to heat sample locally and with an IR camera to record the surface temperature distribution. Common methods to characterize...Laser spot thermography is a novel technique for the detection of surface cracks with a laser to heat sample locally and with an IR camera to record the surface temperature distribution. Common methods to characterize cracks are only suitable for the situation that the laser scanning path is vertical to the crack. But due to the randomness of cracks,when the scanning path is parallel to the crack,surface cracks cannot be detected by these methods. To tackle this problem,a method is presented which is suitable for the situation that the scanning path is parallel to crack. The main idea is to evaluate the crack-caused asymmetries of the surface temperature distribution. The effect of temperature gradient and the maximum scanning interval are analyzed by a 2D simulation. A new crack imaging technique is presented that is based on delayed temperature difference at symmetric points to characterize the crack in the thermal image. Compared well with those obtained by the spatial first derivative method,experimental results are shown to efficiently prove this method.展开更多
Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as t...Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as the object. Through the analysis of actual spindle air cutting experimental data on Leaderway-V450 machine, it is found that the temperature-sensitive points used for modeling is volatility, and this volatility directly leads to large changes on the collinear degree among modeling independent variables. Thus, the forecasting accuracy of multivariate regression model is severely affected, and the forecasting robustness becomes poor too. To overcome this effect, a modeling method of establishing thermal error models by using single temperature variable under the jamming of temperature-sensitive points' volatility is put forward. According to the actual data of thermal error measured in different seasons, it is proved that the single temperature variable model can reduce the loss of fore- casting accuracy resulted from the volatility of tempera- ture-sensitive points, especially for the prediction of cross quarter data, the improvement of forecasting accuracy is about 5 μm or more. The purpose that improving the robustness of the thermal error models is realized, which can provide a reference for selecting the modelingindependent variable in the application of thermal error compensation of CNC machine tools.展开更多
Based on analysis of the reason and process of condensation on ceiling radiant cooling panels, two kinds of arrangement of detectors are put forward. The physical model is established, the results show that detectors ...Based on analysis of the reason and process of condensation on ceiling radiant cooling panels, two kinds of arrangement of detectors are put forward. The physical model is established, the results show that detectors are arranged as the form of triangle is more suitable. It can not only satisfy the use requirement but also it is economical and practical. Finally we can conclude that the inlet water temperature 0.5°C higher than dew point temperature is safe and reliable.展开更多
The Jing-well point temperatures test method is a method to diagnose and guide the treatment of diseases by measuring the subjects' symmetrical well point temperature. it is improved from the method of knowing hea...The Jing-well point temperatures test method is a method to diagnose and guide the treatment of diseases by measuring the subjects' symmetrical well point temperature. it is improved from the method of knowing heat sensitivity. The application of Jing-well point temperatures test method is wide, and it can be used in internal and external gynecology and pediatrics and facial features department. at the same time, it has the advantage of objective and accurate diagnosis. The old law has some shortcomings, such as poor intuition, unavoidable omission of information, incomplete interpretation of information and so on. In this paper, Excel software is used to transform the data into line chart form, which improves the intuition and comprehensiveness of this method, so that the data can be better interpreted and used. It is newly proposed in this article that in addition to observing the longitudinal di fference of well point temperature, more attention should be paid to the horizontal contrast difference of well point temperature in different meridians. The article also summarizes a number of treatment methods, including acupuncture, moxa moxibustion, cupping and scraping, and the selection of acupoints, including mother acupoints, tenderness points and heat-sensitive moxibustion, so that doctors can combine traditional Chinese medicine professional knowledge in clinic.展开更多
基金Project(51101055)supported by the National Natural Science Foundation of China
文摘The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous Al2O3 scale was formed and owned excellent oxidation resistance in the temperature range of 900-1100°C.When the temperature was up to 1150°C,the continuous Al2O3 oxide film ruptured.Trace rare earth element Ho distributed uniformly in the alloy and relatively high level of Al in Cr(Mo)phase are beneficial to the formation of continuous and compact Al2O3 scale.During the oxidation,a phase transformation fromθ-Al2O3 toα-Al2O3 existed on the surface of oxidation film.It resulted in the abnormal oxidation mass gain happening when the alloy was oxidized at 1000°C or 1050°C.
基金Funded by National Natural Science Foundation of China(No.51201121)Key Industry Innovation Chain(group)Project of Shaanxi Province(No.2019ZDLGY 04-04)+1 种基金International Cooperation Project of Key R&D Program in Shaanxi Province(No.2020KW-033)Industrialization Project of Shaanxi Provincial Department of Education(No.20JC024)
文摘Fe-Al-Ta eutectic composites with solidification rates of 6,20,30,80 and 200μm/s were obtained by a modified Bridgman directional solidification technique and alloying.Moreover,tensile property and fracture behavior of Fe-Al-Ta eutectic composites were studied at 600℃.The relationship between mechanical property and microstructure at high temperature was studied.Microstructure of Fe-Al-Ta eutectic is composed of Fe_(2)Ta(Al)Laves phase and Fe(Al,Ta)matrix phase.In addition,the tensile strength at high temperatures is higher than that at room temperature.The tensile strength is increased with the increase of solidification rate.Moreover,fracture morphology transforms from cleavage fracture to dimple fracture as the solidification rate is increased at high temperatures.
基金CONACyT for the scholarship granted to pursue postgraduate studiesCONACyT for Project 258487CONACyT for the support given to undertake a postdoctoral stay through Project 258487。
文摘The main objective of this work was to use reline deep eutectic solvent,containing Al(III)ions,for the electrochemical study of the nucleation and growth of aluminum onto a glassy carbon electrode at different temperatures and angular speeds(ω)of the working electrode.In order to fulfill this,electrochemical and surface characterization techniques were used.It was found that as temperature increased,the onset of the Al(III)DES reduction occurred at less negative potentials while the current peak of the voltammograms increased.These indicate that Al deposition thermodynamics and kinetics were favored.Practically,no anodic current was detected due to Al passivation by Al(OH)_(3)(s)andγ-Al_(2)O_(3)(s).Atω=0 r/min,the Al deposition chronoamperograms were analyzed by a theoretical model comprising Al 3D diffusion-controlled nucleation and growth and residual water reduction.However,those recorded at different angular speeds were analyzed with a theoretical model where adsorption−desorption and diffusion-controlled nucleation−growth occurred simultaneously.The deposits were characterized by SEM,EDX,XPS and XRD.Atω=0 r/min,formation of well distributed nanoparticles((78.1±9.5)nm)was observed,while atω=900 r/min the deposit was formed by multiple 10μm diameter leaf-like flat microstructures,composed by Al,Al(OH)_(3)(s)andγ-A2O3(s).
基金supported by the National Natural Science Foundation of China(No.50102004)the Aeronautical Science Foundation of China(No.97G53066)the Developing Program for Outstanding Persons in NPU,China.
文摘The high-temperature tensile fracture behavior of the Ni, Cr, Al-TaC eutectic superal-loy directionally solidified under high temperature gradient is investigated. The high-temperature tensile fracture of this in situ composite has ductile character with lots of ductile nests whose diameters decrease with the increasing solidification rates. The maximum σb and δ are respectively 668.5MPa and 19.6%. There is α TaC whisker in the center of each nest, and the deformation of γ' and TaC is uneven. The high-temperature tensile behavior cannot be explained by the rule of mixtures but is decided by the formation of the plastic deformation band. The crack extension model is given.
基金supported by the Major State Basic Research Development Program of China (Grant no.2016YFA0601804)supported by the National Natural Science Foundation of China (Grant no.41876220)+3 种基金supported by the National Natural Science Foundation of China (Grant no.41806216)“the Fundamental Research Funds for the Central Universities” (Grant nos.2017B04814, 2017B20714)the Fundamental Research Funds for the Central Universities (Grant no.2013B18020192)by Project funded by China Postdoctoral Science Foundation (Grant nos.2019T120379, 2018M630499)
文摘At present,it is believed that the freezing point temperature of seawater is a function of salinity and pressure,and the freezing point is a key parameter in a coupled air-sea-ice system.Generally,empirical formulas or methods are used to calculate the freezing point of seawater.Especially in high-pressure situations,e.g.,under a thick ice sheet or ice shelf,the pressure term must be taken into account in the determination of seawater freezing point temperature.This study summarized various methods that have been used to calculate seawater freezing point with high pressure.The methods that were employed in two ocean-ice models were also assessed.We identified the disadvantages of these methods used in these two models and addressed the corresponding uncertainties of the freezing point temperature formulas.This study provides useful information on the calculation of the freezing point temperature in numerical modeling and indicates a need to investigate the sensitivity of numerical simulations to the uncertainties in the freezing point temperature in future.
基金supported by a research project (No. 2006IK012) of the General Administration of Quality Supervision, Inspection and Quarantine of P. R. China.
文摘Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied in the detection of the end point temperature (EPT) of thermal denatured protein in fish and meat in this study. It was also used in studying the thermal denatured temperature range of proteins in salmon and chicken meat. The results show that the temperature ranges of denatured proteins were from 65 ℃ to 75 ℃ , and these temperature ranges were influenced by the processing methods. Through SDS-PAGE, the features of repeated heating thermal denatured proteins under the same temperature and processing time were studied. The electrophoresis patterns of thermal denatured proteins determined through repeated heating at the same temperature did not exhibit any change. For the detection of cooked fish and meat samples, they were subjected to applying the SDS-PAGE method, which revealed an EPT ranging from 60 ℃ to 80 ℃ .
基金financial supports provided by the National Natural Science Foundation of China(Nos. 50927403 and 50674088)the Natural Science Foundation of Jiangsu Province(No.BK2009004)the Research Foundation of State Key Laboratory of Coal Resources and Safe Mining(No. SKLCRSM08X06)
文摘A further understanding of the self-heating of coal was obtained by investigating the crossing point temperature(CPT) of different ranks of coal.The tests were carried out using a self-designed experimental system for coal self-heating.50 g(±0.01 g) of coal particles ranging from 0.18 mm to 0.38 mm in size were put into a pure copper reaction vessel attached to the center of a temperature programmed enclosure.The temperature program increased the temperature at a rate of 0.8℃/min.Dry air was permitted to flow into the coal reaction vessel at different rates.The surrounding temperature and the coal temperature were monitored by a temperature logger.The results indicate that CPT is affected by coal rank,moisture,sulfur, and the experimental conditions.Higher ranked coals show higher CPT values.A high moisture content causes a delay phenomenon during the self-heating of the coal.Drying at 40℃decreases the effects of moisture.The reactivity of sulfur components in the coal is low under dry and low-temperature conditions. These components form a film that covers the coal surface and slightly inhibits the self-heating of the coal. The flow rate of dry air,and the heating rate of the surroundings,also affect the self-heating of the coal.The most appropriate experimental conditions for coal samples of a given weight and particle size were determined through contrastive analysis.Based on this analysis we propose that CPTs be determined under the same,or nearly the same conditions,for evaluation of the spontaneous combustion of coal.
文摘This paper aims to detect the short-term as well as long-term change point in the surface air temperature time series for Asansol weather observation station, West Bengal, India. Temperature data for the period from 1941 to 2010 of the said weather observatory have been collected from Indian Meteorological Department, Kolkata. Variations and trends of annual mean temperature, annual mean maximum temperature and annual minimum temperature time series were examined. The cumulative sum charts (CUSUM) and bootstrapping were used for the detection of abrupt changes in the time series data set. Statistically significant abrupt changes and trends have been detected. The major change point in the annual mean temperatures occurred around 1986 (0.57°C) at the period of 25 years in the long-term regional scale. On the other side, the annual mean maximum and annual mean minimum temperatures have distinct change points at level 1. There are abrupt changes in the year 1961 (Confidence interval 1961, 1963) for the annual mean maximum and 1994 (Confidence interval 1993, 1996) for the annual mean minimum temperatures at a confidence level of 100% and 98%, respectively. Before the change, the annual mean maximum and annual mean minimum temperatures were 30.90°C and 23.99°C, respectively, while after the change, the temperatures became 33.93°C and 24.84°C, respectively. Over the entire period of consideration (1941-2010), 11 forward and backward changes were found in total. Out of 11, there are 3 changes (1961, 1986 and 2001) in annual mean temperatures, 4 changes (1957, 1961, 1980 and 1994) in annual mean maximum temperatures, and rest 4 changes (1968, 1981, 1994 and 2001) are associated with annual mean minimum temperature data set.
基金financially supported by the National High Technology Research and Development Program of China(No.2013AA031601)
文摘The high-temperature mechanical properties of near-eutectoid steel were studied with a Cleeble-1500 simu- lation machine. Zero strength temperature (ZST), zero ductility temperature (ZDT), hot ductility curves, and strength curves were measured. Two brittle zones and one plastic zone were found in the temperature range from the melting point to 600℃. Embrittlement in zone I is caused by the existence of liquid film along dendritic interfaces. Ductility loss in zone Ⅲ mainly results from precipitates and inclusions as well as S segregation along grain boundaries. Pearlite transformation also accounts for ductility deterioration in the temperature range of 700-600℃. Moreover, the straightening temperature of the test steel should be higher than 925℃ for avoiding the initiation and propagation of surface cracks in billets.
基金Financial support from the National Natural Science Foundation of China(22279065 and 21935006)is gratefully acknowledged.
文摘The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requirements for battery systems.The high-energy lithium batteries are expected to respond or react under different environmental conditions.In this work,a tri-salt composite electrolyte is designed with a temperature switch function for intelligently temperature-controlled lithium batteries.Specifically,the halide Li_(3)YBr_(6)together with LiTFSI and LiNO_(3)works as active fillers in a low-melting-point polymer matrix(polyethyleneglycol dimethyl ether(PEGDME)and polyethylene oxide(PEO)),which is further filled into the pre-lithiated alumina fiber skeleton.Above 60°C,the composite electrolyte exists in the liquid state and fully contacts with the working electrodes on the liquid–solid interface,effectively minimizing the interfacial resistance and leading to high discharge capacity in the cell.The electrolyte is changed into a solid state below 30°C so that the ionic conductivity is significantly reduced and the interface resistance is increased dramatically on the solid–solid interface.Therefore,by simply adjusting the temperature,the cell can be turned“ON”or“OFF”intentionally.This novel function of the composite electrolyte has enlightening significance in developing intelligently temperature-controlled lithium batteries.
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
文摘Researches are being carried out world-wide to understand the nature of temperature change during recent past at different geographical scales so that comprehensive inferences can be drawn about recent temperature trend and future climate. Detection of turning points in time series of meteorological parameters puts challenges to the researches. In this work, the temperature time series from 1941 to 2010 for Asansol observatory, West Bengal, India, has been considered to understand the nature, trends and change points in the data set using sequential version of Mann-Kendall test statistic. Literatures suggest that use of this test statistic is the most appropriate for detecting climatic abrupt changes as compared to other statistical tests in use. This method has been employed upon monthly average temperatures recorded over the said 70 years for detection of abrupt changes in the average temperature of each of the months. The approximate potential trend turning points have been calculated separately for each month (January to December). Sequential version of Mann-Kendall test statistic values for the months of July and August is significant at 95% confidence level (p 0.05). The average temperature for most of the other months has shown an increasing trend but more significant rise in July and August temperature has been recognized since 1960s.
基金the Shandong Provincial Natural Science Fund(ZR2020ME254 and ZR2020QD061).
文摘Accurate estimation of dew point temperature(Tdew)plays a very important role in the fields of water resource management,agricultural engineering,climatology and energy utilization.However,there are few studies on the applicability of local Tdew algorithms at regional scales.This study evaluated the performance of a new machine learning algorithm,i.e.,gradient boosting on decision trees with categorical features support(Cat Boost)to estimate daily Tdew using limited local and cross-station meteorological data.The random forests(RF)algorithm was also assessed for comparison.Daily meteorological data from 2016 to 2019,including maximum,minimum and average temperature(Tmax,Tmin and Tmean),maximum,minimum and average relative humidity(RHmax,RHmin and RHmean),maximum,minimum and average global solar radiation(Rsmax,Rsmin and Rsmean)from three weather stations in Hunan of China were used to evaluate the CatBoost and RF algorithms.The results showed that both algorithms achieved satisfactory estimation accuracy at the target stations(on average RMSE=1.020℃,R^(2)=0.969,MAE=0.718℃and NRMSE=0.087)in the absence of complete meteorological parameters(with only temperature data as input).The Cat Boost algorithm(on average RMSE=1.900℃and R^(2)=0.835)was better than the RF algorithm(on average RMSE=2.214℃andR^(2)=0.828).The accuracy and stability of the CatBoost and RF algorithms were positively correlated with the number of input parameters,and the three-parameter algorithms achieved higher estimation accuracy than the two-parameter algorithms.The developed methodology is helpful to predict Tdew at regional scale.
基金financially supported by the Shandong Natural Science Foundation (ZR2009FL020)the Shandong Transportation Innovation Foundation (2010Y20)
文摘In this paper, in order to investigate the viscoelasticity of asphalt binder at the softening point temperature, more than 30 different asphalt binders were selected and tested by dynamic rheological scan method using a dynamic shear rheometer(DSR). The softening points and the rheological parameters of the asphalt samples were measured and analyzed. The results indicated that at the softening point temperature the neat asphalt and the SBS modified asphalt showed two different rheological states. The neat asphalt binders had a majority of viscous components in viscoelastic composition, with the phase angles being mostly higher than 80 o. The SBS modified binders had lower phase angles, with their elasticity still retained. Meanwhile, the Shapiro-Wilk normality test showed that at a confidence level of 0.05, at whatever aging state, the neat asphalt had a stable complex modulus corresponding to the softening point, which was 13.034 kPa at a standard deviation of 2.105 kPa under the same test condition. The softening point of neat asphalt binder can be calculated via the equivalent modulus rule. It is found out that there is a good relationship between the calculated and the measured softening points. And it is suggested that more data are needed to validate this finding.
文摘It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentration solar cells and are used in light concentration photovoltaic systems (<i><span style="font-family:Verdana;">CPV</span></i><span style="font-family:Verdana;">). In fact, the significant heating of these solar cells is due to the concentration of the solar flux which arrives on them. Light concentration solar cells appear as solar cells under strong influences of heating and temperature. It is therefore necessary to take into account temperature effect on light concentration solar cells performances in order to obtain realistic results. </span><span style="font-family:""><span style="font-family:Verdana;">This one-dimensional study of a crystalline silicon solar cell under light concentration takes into account electrons concentration gradient electric field in the determination of the continuity equation of minority carriers in the base. To determine excess minority carrier’s density, the effects of temperature on the diffusion and mobility of electrons and holes, on the intrinsic concentration of electrons, on carrier’s generation rate as well as on width of band gap have also been taken into account. The results show that an increase of temperature improves diffusion parameters and leads to an increase of the short-circuit photocurrent density. However, an increase of temperature leads to a significant decrease in open-circuit photovoltage, maximum electric power and conversion efficiency. The results also show that the operating point and the maximum power point (</span><i><span style="font-family:Verdana;">MPP</span></i><span style="font-family:Verdana;">) moves to the open circuit when the cell temperature increases.</span></span>
文摘Pour point depressants (PPD) are used to improve the theology of waxy crude. The affect of various factors on the theological properties, and the thermal characteristics of waxy crude treated by PPD have been investigated. The conclusions are as follows: PPD can reduce the pour point and abnormal point of waxy crude, broaden the temperature range of Newtonian fluid of waxy crude, and lower greatly the viscosity of non-Newtonian fluid of waxy crude. The influence of reheating and high-rate shear on the effect of PPD mainly depends on their temperature. When the reheating temperature is more than the abnormal point of crude by 10℃, the reheating process has little effect on the modification effect of PPD. However, when the reheating temperature is below the abnormal point of crude, the reheating process will reduce the modification effect of PPD. When temperature is above the abnormal point of crude, the high-rate shear has little effect on the modification effect of PPD. At a temperature range where a lot of wax is precipitating, high-rate shear will greatly reduce the modification effect of PPD.
基金supported by the National Key Scientific Instrument and Equipment Development Projects,China(Grant No.2013YQ470767)。
文摘Laser spot thermography is a novel technique for the detection of surface cracks with a laser to heat sample locally and with an IR camera to record the surface temperature distribution. Common methods to characterize cracks are only suitable for the situation that the laser scanning path is vertical to the crack. But due to the randomness of cracks,when the scanning path is parallel to the crack,surface cracks cannot be detected by these methods. To tackle this problem,a method is presented which is suitable for the situation that the scanning path is parallel to crack. The main idea is to evaluate the crack-caused asymmetries of the surface temperature distribution. The effect of temperature gradient and the maximum scanning interval are analyzed by a 2D simulation. A new crack imaging technique is presented that is based on delayed temperature difference at symmetric points to characterize the crack in the thermal image. Compared well with those obtained by the spatial first derivative method,experimental results are shown to efficiently prove this method.
基金Supported by Key Project of National Natural Science Fund of China(Grant No.51490660/51490661)National Natural Science Foundation of China(Grant No.51175142)
文摘Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as the object. Through the analysis of actual spindle air cutting experimental data on Leaderway-V450 machine, it is found that the temperature-sensitive points used for modeling is volatility, and this volatility directly leads to large changes on the collinear degree among modeling independent variables. Thus, the forecasting accuracy of multivariate regression model is severely affected, and the forecasting robustness becomes poor too. To overcome this effect, a modeling method of establishing thermal error models by using single temperature variable under the jamming of temperature-sensitive points' volatility is put forward. According to the actual data of thermal error measured in different seasons, it is proved that the single temperature variable model can reduce the loss of fore- casting accuracy resulted from the volatility of tempera- ture-sensitive points, especially for the prediction of cross quarter data, the improvement of forecasting accuracy is about 5 μm or more. The purpose that improving the robustness of the thermal error models is realized, which can provide a reference for selecting the modelingindependent variable in the application of thermal error compensation of CNC machine tools.
文摘Based on analysis of the reason and process of condensation on ceiling radiant cooling panels, two kinds of arrangement of detectors are put forward. The physical model is established, the results show that detectors are arranged as the form of triangle is more suitable. It can not only satisfy the use requirement but also it is economical and practical. Finally we can conclude that the inlet water temperature 0.5°C higher than dew point temperature is safe and reliable.
文摘The Jing-well point temperatures test method is a method to diagnose and guide the treatment of diseases by measuring the subjects' symmetrical well point temperature. it is improved from the method of knowing heat sensitivity. The application of Jing-well point temperatures test method is wide, and it can be used in internal and external gynecology and pediatrics and facial features department. at the same time, it has the advantage of objective and accurate diagnosis. The old law has some shortcomings, such as poor intuition, unavoidable omission of information, incomplete interpretation of information and so on. In this paper, Excel software is used to transform the data into line chart form, which improves the intuition and comprehensiveness of this method, so that the data can be better interpreted and used. It is newly proposed in this article that in addition to observing the longitudinal di fference of well point temperature, more attention should be paid to the horizontal contrast difference of well point temperature in different meridians. The article also summarizes a number of treatment methods, including acupuncture, moxa moxibustion, cupping and scraping, and the selection of acupoints, including mother acupoints, tenderness points and heat-sensitive moxibustion, so that doctors can combine traditional Chinese medicine professional knowledge in clinic.