A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial aco...A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial acoustic modes in 1060-XP SMF show different sensitivities to temperature and salinity.Based on the new phenomenon that different radial acoustic modes have different frequency shift-temperature and frequency shift-salinity coefficients,we propose a novel method for simultaneously measuring temperature and salinity by measuring the frequency shift changes of two FBS scattering peaks.In a proof-of-concept experiment,the temperature and salinity measurement errors are 0.12℃and 0.29%,respectively.The proposed method for simultaneously measuring temperature and salinity has the potential applications such as ocean surveying,food manufacturing and pharmaceutical engineering.展开更多
This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with high...This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with highly reduced strain cross-sensitivity.The fiber Bragg grating sensor is encapsulated in a polyimide tube filled with epoxy resin,forming an arc-shaped cavity.This assembly is then placed between two layers of glass fiber prepreg with a flexible pad in between and cured into shape.Experimental results,supported by finite element simulations,demonstrate an enhanced temperature sensitivity is 26.3 pm/°C over a wide temperature range of–30°C to 70°C,and high strain transfer isolation of about 99.65%.展开更多
Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ...Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.展开更多
The novel integrated circuit (IC) temperature sensor presented in this paper works similarly as a two terminal Zener, has breakdown voltage directly proportional to Kelvin temperature at 10 mV/℃, with typical error ...The novel integrated circuit (IC) temperature sensor presented in this paper works similarly as a two terminal Zener, has breakdown voltage directly proportional to Kelvin temperature at 10 mV/℃, with typical error of less than ±1.0℃ over a temperature range from -50℃ to +125℃. In addition to all the features that conventional IC temperature sensors have, the new device also has very low static power dissipation ( 0.5 mW ) , low output impedance ( less than 1Ω), excellent stability, high reproducibility, and high precision. The sensor's circuit design and layout are discussed in detail. Applications of the sensor include almost any type of temperature sensing over the range of -50℃-+125℃. The low impedance and linear output of the device make interfacing the readout or control circuitry especially easy. Due to the excellent performance and low cost of this sensor, more applications of the sensor over wide temperature range are expected.展开更多
The transmission equation of microdisk resonator is obtained by the transfer matrix method.The physical model is built and the electric field distribution,output spectrum and phase of the microdisk resonator are simul...The transmission equation of microdisk resonator is obtained by the transfer matrix method.The physical model is built and the electric field distribution,output spectrum and phase of the microdisk resonator are simulated by three-dimensional finite element software.The influence of the structural parameters on transmission characteristics and the temperature sensing property of the microdisk resonator are studied deeply.The results show that the output spectrum will change significantly with the distance between the microdisk and the straight waveguide within a certain range but there is no apparent change in the phase of the output port.The extinction ratio and maxima sensitivity of the device will reach 30 dB and 45 pm/℃,respectively.Microdisk has higher integration,higher quality factor and wider free spectral range compared with common microring resonator.展开更多
Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures ...Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures are characterized by x-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption-desorption analyses. The mechanism for the growth of zinc oxide nanostructures over the biotemplate is proposed. SEM and TEM observations also reveal the formation of spherical zinc oxide nanoparticles over the interwoven fibrous network. Multiple sized pores having pore diameter ranging from 10- 4Ohm is also evidenced from the pore size distribution plot. The larger surface area and porous nature of the material lead to high sensitivity (40.93% for 300 ppm of ethanol), quick response (42s) and recovery (40 s) towards ethanol at 30014. The porous nature of the interwoven fibre-like network affords mass transportation of ethanol vapor, which results in faster surface accessibility, and hence it acts as a potential candidate for ethanol sensing at room temperature.展开更多
The effects of carbon nanoparticle(CNP)on rice variety Swarna(MTU7029)were investigated.CNP induced effects similar to shade avoidance response(SAR)of Arabidopsis,with increase in shoot length,root length,root number,...The effects of carbon nanoparticle(CNP)on rice variety Swarna(MTU7029)were investigated.CNP induced effects similar to shade avoidance response(SAR)of Arabidopsis,with increase in shoot length,root length,root number,cotyledon area,chlorophyll content and total sugar content in rice seedlings.In mature plants,CNP treatment resulted increase in plant height,number of productive tillers per plant,normalized difference vegetation index,quantum yield and root growth.A total of 320 mg of CNP per plant administered in four doses resulted in improved grain traits such as filled grain rate,100-grain weight,grain length/width ratio,hulling rate,milling rate and head rice recovery.Seeds from the CNP-treated plants showed increase in amylose,starch and soluble sugar contents compared to controls.Strikingly,CNP treatment showed an average of 17.5%increase in yield per plant.Upon investigation to the molecular mechanism behind CNP induction of SAR,a significant downregulation of phytochrome B transcript was found.Decrease in perception of red wavelengths led to responses similar to SAR.Increase in plant’s internal temperature by 0.5ºC±0.1ºC was recorded after CNP treatment.We suggest that the internalized CNP aggregates may serve to absorb extra photons thereby increasing the internal temperature of plants.Phytochrome B accounts the hike in internal temperature and initiates a feed-back reduction of its own transcription.We suggest that moderate SAR is beneficial for rice plants to improve agronomic traits and yield.It presents a potential non-transgenic method for improving rice yield by CNP treatment.展开更多
The W(18)O(49) nanoflowers with a diameter of 500 nm are prepared by a facile hydrothermal method. The Er-Yb:NaYF4 nanoparticles are adsorbed on the petals(the position of the strongest local electric field on W...The W(18)O(49) nanoflowers with a diameter of 500 nm are prepared by a facile hydrothermal method. The Er-Yb:NaYF4 nanoparticles are adsorbed on the petals(the position of the strongest local electric field on W(18)O(49) nanoflowers).With a 976 nm laser diode(LD) as an excitation source, the selectively green upconversion luminescence(UCL) is observed to be enhanced by two orders of magnitude in Er-Yb: NaYF4/W(18)O(49) nanoflowers heterostructures. It suggests that the near infrared(NIR)-excited localized surface plasmon resonance(LSPR) of W(18)O(49) is primarily responsible for the enhanced UCL, which could be partly reabsorbed by the W(18)O(49), thus leading to the selective enhancement of green UCL for the Er-Yb: NaYF4. The fluorescence intensity ratio is investigated as a function of temperature based on the intense green UCL, which indicates that Er-Yb: NaYF4/W(18)O(49) nanoflower heterostructures have good potential for developing into temperature sensors.展开更多
The embedded temperature sensing fabric was designed and woven according to the heat transmission model of the fabric.The temperature sensors were embedded into the multi-layered fabric that weft yarns were high-shrin...The embedded temperature sensing fabric was designed and woven according to the heat transmission model of the fabric.The temperature sensors were embedded into the multi-layered fabric that weft yarns were high-shrinkage polyester filaments.And the fabric was treated by a self-designed partial heat device,which can make the sensor be fixed in the fabric.The effects of yarn type,yarn linear density,fabric warp density,fabric structure,fabric layer numbers where the sensor is located,and the ambient temperature on the temperature measured value were investigated.The results demonstrated that when the higher thermal conductivity of yarns and lower density yarns were applied in the fabric as rawmaterials,they were favored to improve the measurement precision.Meanwhile,there were many factors that could make the measured values closer to the real value of the body,such as the plain fabric,the increased warp density of the fabric,the multiple-layer fabric where the sensor was located,the raised ambient testing temperature and the prolonged test time in the certain range.展开更多
In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBC) temperature sensor. This is a fully distributed sensing method ...In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBC) temperature sensor. This is a fully distributed sensing method based on the simulated annealing evolutionary (SAE) algorithm. Several modifications are made to improve the algorithm efficiency, including choosing the most superior chromosome, setting up the boundary of every gene according to the density of resonance peaks of the reflection spectrum, and dynamically modifying the boundary with the algorithm running. Numerical simulation results show that both the convergence rate and the fluctuation are significantly improved. A high spat-ial temperature resolution of 0.25 mm has been achieved at the time cost of 86 s.展开更多
Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal t...Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal transmission and monitoring were illustrated. As applied in Sitai Coal Mine of Datong Coal Mine Group Co., this method is effective and accurate and could provide reliable gist for monitoring spontaneous combustion in gob area of mines.展开更多
Sea-ice and Sea Surface Temperature in offshore seas are important terms for operational monitoring and forecasting marine environment in China. The software system of regional marine environmental application designe...Sea-ice and Sea Surface Temperature in offshore seas are important terms for operational monitoring and forecasting marine environment in China. The software system of regional marine environmental application designed by author is used for realtime operational monitoring sea-ice, SST, oceanic current and colours and characters of land surface. This software system processes quantitative AVHRR data from NOAA satellite to calculate calibration coefficient, solar angle correction, earth location parameter and atmospheric attenuation correction, then SST field will be produced through calculation using special SST model, and top-quality of colour composite imagery of satellite with variable spacial resolution (1, 2 or 5km) will be produced via image processing. Inside front covor Figure 1 is colour enhanced imagery with 5km resolution of NOAA satellite in offshore展开更多
Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other ...Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.展开更多
Optical temperature sensing based on the fluorescence intensity ratio(FIR)of red emission for lanthanide ions holds significant relevance in non-contact temperature measurement for biological application.In this study...Optical temperature sensing based on the fluorescence intensity ratio(FIR)of red emission for lanthanide ions holds significant relevance in non-contact temperature measurement for biological application.In this study,the perovskite-structured KZnF_(3)is utilized as a host material for Er^(3+)to achieve a high-purity upconversion(UC)red emission.The observed Stark splitting of the red emission peak provides evidence of the energy level splitting of Er^(3+).Group theory is employed to decompose the spectral branching of Er^(3+)under the point group symmetry of KZnF_(3),allowing for the derivation of Stark splitting energy levels induced by the crystal field effect.The optical temperature-sensing behavior of the red UC luminescence was investigated,specifically examining the FIR of the splitting sub-peaks,which exhibited an exponential relationship with temperature.The KZnF_(3):Yb^(3+),Er^(3+)demonstrated a relative sensitivity(S_(r))of 0.00182%·K^(-1)at 298 K,highlighting its excellent response to temperature.Ex vivo bio-thermometry experiments conducted on chicken breast validated the material's ability to penetrate biological tissues and showed its significant sensitivity of the FIR to temperature.These results establish KZnF_(3):Yb^(3+),Er^(3+)as a promising material for optical thermometry in various biological applications.展开更多
Cubic phase Tm^(3+)/Yb^(3+):Y_(2)O_(3) and Tm^(3+)/Yb^(3+)/Gd^(3+):Y_(2)O_(3) phosphors were prepared by low temperature combustion technique for upconversion emission in UV-visible range.The 980 nm excitation has gen...Cubic phase Tm^(3+)/Yb^(3+):Y_(2)O_(3) and Tm^(3+)/Yb^(3+)/Gd^(3+):Y_(2)O_(3) phosphors were prepared by low temperature combustion technique for upconversion emission in UV-visible range.The 980 nm excitation has generated UV emission at 314 nm in tridoped phosphor due to the energy transfer from Tm^(3+) to Gd^(3+)ion.Characteristic emission bands from Tm^(3+) are also observed in both the phosphors.Thermally coupled Stark sublevels ^(1)G_(4(a))(476 nm) and ^(1)G_(4(b))(488 nm) of Tm^(3+) ion were utilised for optical thermometry using fluorescent intensity ratio(FIR) method.The result shows that maximum absolute sensitivity in tridoped phosphor is observed to be 1.33 × 10^(-3) K^(-1) at 298 K.Moreover,temperature rise of phosphor at various pump power densities was also measured and it is estimated to achieve 407 K at the pump power density of 38.46 W/cm^(2).展开更多
In this work,tunable white up-conversion luminescence was achieved in the Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) codoped Na_(3)La(VO_(4))_(2) phosphors under 980 nm excitation.The emissions of three primary colors are mainly...In this work,tunable white up-conversion luminescence was achieved in the Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) codoped Na_(3)La(VO_(4))_(2) phosphors under 980 nm excitation.The emissions of three primary colors are mainly attributed to the ~2H_(11/2)/~4S_(3/2)→~4I_(15/2) transitions of Er^(3+),~1G_(4)→~3H_6 transition of Tm^(3+),and_5F_5→~5I_8 transition of Ho^(3+).White luminescence characteristics and mechanisms of up-conversion system were investigated in detail.In addition,the temperature sensing behaviors of multiple levels emission combinations for Na_(3)La(VO_(4))_(2):Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) were analyzed by employing thermally coupled and non-thermally coupled energy levels.Based on the emissions of ~3F_(2,3)/~1G_(4) energy levels,the maximum relative and absolute sensitivities were obtained to be 2.20%/K and 0.279 K^(-1).The design of up-conversion luminescence materials with high-quality white luminescence and excellent sensitivity performance is critical in the field of optical applications.展开更多
A kind of photonic crystal (PC) micro-cavity sensor based on magnetic fluid (MF) filling is designed with simulation model. Generally, many sensors’ designs are based on a universal temperature in the whole structure...A kind of photonic crystal (PC) micro-cavity sensor based on magnetic fluid (MF) filling is designed with simulation model. Generally, many sensors’ designs are based on a universal temperature in the whole structure. However, strong photothermal effect in high Q micro-cavities will lead to different temperatures between cavities and environment inevitably. In many theoretical PC sensor designs, researchers neglected the different temperature between environment and cavities. This simple hypothesis will probably lead to failure of sensor design and get wrong temperature. Moreover, few theoretical or experimental works have been done to study optical cavity’s heating process and temperature. We propose that researchers should take seriously about this point. Here, the designed cascaded micro-cavity structure has three spectral lines and a reversible sensitivity matrix, which can simultaneously detect magnetic field, ambient temperature and MF micro-cavity temperature. It can solve the magnetic field and temperature cross-sensitivity problem, and further, distinguish the different temperatures of environment and magnetic fluid cavities. The influence of hole radius and slab thickness on the depth and Q value of the resonant spectral line are also studied. Responses of three dips to magnetic field, ambient temperature and MF micro-cavity temperature are simulated, respectively, where dip 1 belongs to MF cavity 1, dip 2 and dip 3 belong to MF cavity 2. The obtained magnetic field sensitivities are 2.89 pm/Oe, 4.57 pm/Oe, and 5.14 pm/Oe, respectively;the ambient temperature sensitivities are 65.51 pm/K, 50.94 pm/K, and 58.98 pm/K, respectively;and the MF micro-cavity temperature sensitivities are −14.41 pm/K, −17.06 pm/K, and −18.81 pm/K, respectively.展开更多
Pr-doped metal oxide polycrystalline transparent ceramics are highly desirable for photothermal window systems served in extreme environments;however,obtaining efficient photoluminescence(PL)together with high transpa...Pr-doped metal oxide polycrystalline transparent ceramics are highly desirable for photothermal window systems served in extreme environments;however,obtaining efficient photoluminescence(PL)together with high transparency in these ceramics is still posing serious challenges,which undoubtedly limits their applications.Here,Pr-doped Y_(2)Zr_(2)O_(7)(YZO)transparent ceramics,as an illustrative example,are prepared by a solid-state reaction and vacuum sintering method.Owing to the elimination of defect clusters[Pr_(Y)^(4+)-O^(2-)Pr_(Y)^(4+)]and[Pr_(Y)^(4+)-e′]without the introduction of impurities and additional defects,the fabricated YZO:Pr ceramics exhibit high transparency(74%)and efficient PL(39-fold enhanced)after air annealing plus vacuum re-annealing treatment.Moreover,upon 295/450 nm excitation,the emission bands(blue,green,red,and dark red)from YZO:Pr ceramics present different temperature-dependent properties due to the thermalquenching channel generated by the intervalence charge transfer(IVCT)state between Pr_(Y)^(4+)and Zr^(4+)ions.Furthermore,a self-calibrated temperature feedback window with the same fluorescence intensity ratio(FIR)model(I_(613)/I_(503),where I represents the intensity)under different excitation light sources(295 and 450 nm)is designed.The developed photothermal window operated in a wide temperature range(303-663 K)shows relatively high sensitivities(absolute sensitivity(Sa)and relative sensitivity(S)reach 0.008 K^(-1)at 663 K and 0.47%K^(-1)at 363 K,respectively),high repeatability(>98%),and low temperature uncertainty(T<3.2 K).This work presents a paradigm for achieving enhanced PL along with elevated transparency of lanthanide(Ln)-doped ceramics through vacuum re-annealing treatment engineering and demonstrates their promising potential for photothermal window systems.展开更多
The probability of medical staff to get affected from COVID19 is much higher due to their working environment which is more exposed to infectious diseases.So,as a preventive measure the body temperature monitoring of ...The probability of medical staff to get affected from COVID19 is much higher due to their working environment which is more exposed to infectious diseases.So,as a preventive measure the body temperature monitoring of medical staff at regular intervals is highly recommended.Infrared temperature sensing guns have proved its effectiveness and therefore such devices are used to monitor the body temperature.These devices are either used on hands or forehead.As a result,there are many issues in monitoring the temperature of frontline healthcare professionals.Firstly,these healthcare professionals keep wearing PPE(Personal Protective Equipment)kits during working hours and as a result it would be very difficult to monitor their body temperature.Secondly,these healthcare professionals also wear face shields and in such cases monitoring temperature by exposing forehead needs removal of face shield.Doing so after regular intervals is surely uncomfortable for healthcare professionals.To avoid such issues,this paper is disclosing a technologically advanced face shield equipped with sensors capable of monitoring body temperature instantly without the hassle of removing the face shield.This face shield is integrated with a built-in infrared temperature sensor.A total of 10 such face shields were printed and assembled within the university lab and then handed over to a group of ten members including faculty and students of nursing and health science department.This sequence was repeated four times and as a result 40 healthcare workers participated in the study.Thereafter,feedback analysis was conducted on questionnaire data and found a significant overall mean score of 4.59 out of 5 which indicates that the product is effective and worthy in every facet.Stress analysis is also performed in the simulated environment and found that the device can easily withstand the typically applied forces.The limitations of this product are difficulty in cleaning the product and comparatively high cost due to the deployment of electronic equipment.展开更多
Effectively monitoring of hazardous gases has become increasingly important for ecological environment and human health.As an emerging component of two-dimensional materials,layered metal dichalcogenides are gaining s...Effectively monitoring of hazardous gases has become increasingly important for ecological environment and human health.As an emerging component of two-dimensional materials,layered metal dichalcogenides are gaining significant attention due to their unique physical and chemical properties,thus catering well to the gas sensing application.Particularly,tin disulfide(SnS_(2))has been widely examined recently owing to its low-cost,earth-abundant,and environmental friendliness features,which meet the requirements of advanced sensing platforms.Herein,the booming research advancements of SnS_(2)-based gas sensors have been presented.Firstly,the basic attributes of SnS_(2) and its ability to detect various hazardous gases are introduced.Secondly,innovative approaches that have demonstrated the effectiveness of improving the room temperature sensing performance of SnS_(2) are summarized.Finally,the major challenges and future opportunities of SnS_(2) are also outlined.It is ultimately expected that this timely review could offer guidance for designing high-performance gas sensing materials and further push forward their potential applications.展开更多
基金supported by the Na-tional Natural Science Foundation of China(Nos.62175105,61875086)Fundamental Research Funds for the Cen-tral Universities of China(No.ILB240041A24)。
文摘A novel temperature and salinity discriminative sensing method based on forward Brillouin scattering(FBS)in 1060-XP single-mode fiber(SMF)is proposed.The measured frequency shifts corresponding to different radial acoustic modes in 1060-XP SMF show different sensitivities to temperature and salinity.Based on the new phenomenon that different radial acoustic modes have different frequency shift-temperature and frequency shift-salinity coefficients,we propose a novel method for simultaneously measuring temperature and salinity by measuring the frequency shift changes of two FBS scattering peaks.In a proof-of-concept experiment,the temperature and salinity measurement errors are 0.12℃and 0.29%,respectively.The proposed method for simultaneously measuring temperature and salinity has the potential applications such as ocean surveying,food manufacturing and pharmaceutical engineering.
基金the financial support from Zhuzhou Times New Material Technology Co.LtD.(Grant No.XCFDJS-2022-00004495)Chilean National Agency for Research and Development(Basal FB0008).
文摘This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with highly reduced strain cross-sensitivity.The fiber Bragg grating sensor is encapsulated in a polyimide tube filled with epoxy resin,forming an arc-shaped cavity.This assembly is then placed between two layers of glass fiber prepreg with a flexible pad in between and cured into shape.Experimental results,supported by finite element simulations,demonstrate an enhanced temperature sensitivity is 26.3 pm/°C over a wide temperature range of–30°C to 70°C,and high strain transfer isolation of about 99.65%.
基金The authors grate fully acknowledge the financial support provided by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao),China(Grant No.SKUoTSC(UM)-2021-2023/0RP/GA10/2022).
文摘Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.
文摘The novel integrated circuit (IC) temperature sensor presented in this paper works similarly as a two terminal Zener, has breakdown voltage directly proportional to Kelvin temperature at 10 mV/℃, with typical error of less than ±1.0℃ over a temperature range from -50℃ to +125℃. In addition to all the features that conventional IC temperature sensors have, the new device also has very low static power dissipation ( 0.5 mW ) , low output impedance ( less than 1Ω), excellent stability, high reproducibility, and high precision. The sensor's circuit design and layout are discussed in detail. Applications of the sensor include almost any type of temperature sensing over the range of -50℃-+125℃. The low impedance and linear output of the device make interfacing the readout or control circuitry especially easy. Due to the excellent performance and low cost of this sensor, more applications of the sensor over wide temperature range are expected.
基金National Natural Science Foundation of China(No.61762057)Natural Science Foundation of Gansu Province(No.18JR3RA123)。
文摘The transmission equation of microdisk resonator is obtained by the transfer matrix method.The physical model is built and the electric field distribution,output spectrum and phase of the microdisk resonator are simulated by three-dimensional finite element software.The influence of the structural parameters on transmission characteristics and the temperature sensing property of the microdisk resonator are studied deeply.The results show that the output spectrum will change significantly with the distance between the microdisk and the straight waveguide within a certain range but there is no apparent change in the phase of the output port.The extinction ratio and maxima sensitivity of the device will reach 30 dB and 45 pm/℃,respectively.Microdisk has higher integration,higher quality factor and wider free spectral range compared with common microring resonator.
文摘Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures are characterized by x-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption-desorption analyses. The mechanism for the growth of zinc oxide nanostructures over the biotemplate is proposed. SEM and TEM observations also reveal the formation of spherical zinc oxide nanoparticles over the interwoven fibrous network. Multiple sized pores having pore diameter ranging from 10- 4Ohm is also evidenced from the pore size distribution plot. The larger surface area and porous nature of the material lead to high sensitivity (40.93% for 300 ppm of ethanol), quick response (42s) and recovery (40 s) towards ethanol at 30014. The porous nature of the interwoven fibre-like network affords mass transportation of ethanol vapor, which results in faster surface accessibility, and hence it acts as a potential candidate for ethanol sensing at room temperature.
基金supported by the Department of Science and Technology,Women Scientist Scheme-A in India(Grant No.SR/WOS-A/LS-369/2018)Science Engineering Research Board,Young Scientist Start-Up Grant in India(Grant No.YSS-2015-000659)+1 种基金Department of Science and Technology,Science Engineering Research Board,India(Grant No.EMR/2014/000533)Department of Atomic Energy,National Institute of Science Education and Research in India.
文摘The effects of carbon nanoparticle(CNP)on rice variety Swarna(MTU7029)were investigated.CNP induced effects similar to shade avoidance response(SAR)of Arabidopsis,with increase in shoot length,root length,root number,cotyledon area,chlorophyll content and total sugar content in rice seedlings.In mature plants,CNP treatment resulted increase in plant height,number of productive tillers per plant,normalized difference vegetation index,quantum yield and root growth.A total of 320 mg of CNP per plant administered in four doses resulted in improved grain traits such as filled grain rate,100-grain weight,grain length/width ratio,hulling rate,milling rate and head rice recovery.Seeds from the CNP-treated plants showed increase in amylose,starch and soluble sugar contents compared to controls.Strikingly,CNP treatment showed an average of 17.5%increase in yield per plant.Upon investigation to the molecular mechanism behind CNP induction of SAR,a significant downregulation of phytochrome B transcript was found.Decrease in perception of red wavelengths led to responses similar to SAR.Increase in plant’s internal temperature by 0.5ºC±0.1ºC was recorded after CNP treatment.We suggest that the internalized CNP aggregates may serve to absorb extra photons thereby increasing the internal temperature of plants.Phytochrome B accounts the hike in internal temperature and initiates a feed-back reduction of its own transcription.We suggest that moderate SAR is beneficial for rice plants to improve agronomic traits and yield.It presents a potential non-transgenic method for improving rice yield by CNP treatment.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474046 and 61775024)the Program for Liaoning Innovation Team in University,China(Grant No.LT2016011)+1 种基金the Science and Technique Foundation of Dalian,China(Grant Nos.2017RD12 and 2015J12JH201)the Fundamental Research Funds for the Central Universities,China(Grant No.DC201502080203)
文摘The W(18)O(49) nanoflowers with a diameter of 500 nm are prepared by a facile hydrothermal method. The Er-Yb:NaYF4 nanoparticles are adsorbed on the petals(the position of the strongest local electric field on W(18)O(49) nanoflowers).With a 976 nm laser diode(LD) as an excitation source, the selectively green upconversion luminescence(UCL) is observed to be enhanced by two orders of magnitude in Er-Yb: NaYF4/W(18)O(49) nanoflowers heterostructures. It suggests that the near infrared(NIR)-excited localized surface plasmon resonance(LSPR) of W(18)O(49) is primarily responsible for the enhanced UCL, which could be partly reabsorbed by the W(18)O(49), thus leading to the selective enhancement of green UCL for the Er-Yb: NaYF4. The fluorescence intensity ratio is investigated as a function of temperature based on the intense green UCL, which indicates that Er-Yb: NaYF4/W(18)O(49) nanoflower heterostructures have good potential for developing into temperature sensors.
基金Hubei Province Natural Science Fund Project,China(No.2013CFA090)
文摘The embedded temperature sensing fabric was designed and woven according to the heat transmission model of the fabric.The temperature sensors were embedded into the multi-layered fabric that weft yarns were high-shrinkage polyester filaments.And the fabric was treated by a self-designed partial heat device,which can make the sensor be fixed in the fabric.The effects of yarn type,yarn linear density,fabric warp density,fabric structure,fabric layer numbers where the sensor is located,and the ambient temperature on the temperature measured value were investigated.The results demonstrated that when the higher thermal conductivity of yarns and lower density yarns were applied in the fabric as rawmaterials,they were favored to improve the measurement precision.Meanwhile,there were many factors that could make the measured values closer to the real value of the body,such as the plain fabric,the increased warp density of the fabric,the multiple-layer fabric where the sensor was located,the raised ambient testing temperature and the prolonged test time in the certain range.
基金Project supported by the Development Foundation of the Education Commission of Shanghai Municipality (Grant No.2008CG47)the Cultivation Foundation of the Key Scientific and Technical Innovation Project (Grant No.708041)+2 种基金the Research Foundation for the Doctoral Program of Higher Education Ministry of Education of China (Grant No.20093108120017)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Natural Science Foundation of Shanghai Municipality (Grant No.09ZR1412200)
文摘In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBC) temperature sensor. This is a fully distributed sensing method based on the simulated annealing evolutionary (SAE) algorithm. Several modifications are made to improve the algorithm efficiency, including choosing the most superior chromosome, setting up the boundary of every gene according to the density of resonance peaks of the reflection spectrum, and dynamically modifying the boundary with the algorithm running. Numerical simulation results show that both the convergence rate and the fluctuation are significantly improved. A high spat-ial temperature resolution of 0.25 mm has been achieved at the time cost of 86 s.
基金Supported by the National Natural Science Foundation of China (50375026,50375028)
文摘Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal transmission and monitoring were illustrated. As applied in Sitai Coal Mine of Datong Coal Mine Group Co., this method is effective and accurate and could provide reliable gist for monitoring spontaneous combustion in gob area of mines.
文摘Sea-ice and Sea Surface Temperature in offshore seas are important terms for operational monitoring and forecasting marine environment in China. The software system of regional marine environmental application designed by author is used for realtime operational monitoring sea-ice, SST, oceanic current and colours and characters of land surface. This software system processes quantitative AVHRR data from NOAA satellite to calculate calibration coefficient, solar angle correction, earth location parameter and atmospheric attenuation correction, then SST field will be produced through calculation using special SST model, and top-quality of colour composite imagery of satellite with variable spacial resolution (1, 2 or 5km) will be produced via image processing. Inside front covor Figure 1 is colour enhanced imagery with 5km resolution of NOAA satellite in offshore
基金supported by the Australian Research Council (ARC) Discovery Project.
文摘Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.
基金financially supported by Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)"Qinglan Project"Young and Middle-aged Academic Leaders Program of Jiangsu Province。
文摘Optical temperature sensing based on the fluorescence intensity ratio(FIR)of red emission for lanthanide ions holds significant relevance in non-contact temperature measurement for biological application.In this study,the perovskite-structured KZnF_(3)is utilized as a host material for Er^(3+)to achieve a high-purity upconversion(UC)red emission.The observed Stark splitting of the red emission peak provides evidence of the energy level splitting of Er^(3+).Group theory is employed to decompose the spectral branching of Er^(3+)under the point group symmetry of KZnF_(3),allowing for the derivation of Stark splitting energy levels induced by the crystal field effect.The optical temperature-sensing behavior of the red UC luminescence was investigated,specifically examining the FIR of the splitting sub-peaks,which exhibited an exponential relationship with temperature.The KZnF_(3):Yb^(3+),Er^(3+)demonstrated a relative sensitivity(S_(r))of 0.00182%·K^(-1)at 298 K,highlighting its excellent response to temperature.Ex vivo bio-thermometry experiments conducted on chicken breast validated the material's ability to penetrate biological tissues and showed its significant sensitivity of the FIR to temperature.These results establish KZnF_(3):Yb^(3+),Er^(3+)as a promising material for optical thermometry in various biological applications.
基金supported by the DST-SERB,New Delhi,India (EMR/000228/2017)TEQIP-Ⅲ,Ministry of Education,Government of India。
文摘Cubic phase Tm^(3+)/Yb^(3+):Y_(2)O_(3) and Tm^(3+)/Yb^(3+)/Gd^(3+):Y_(2)O_(3) phosphors were prepared by low temperature combustion technique for upconversion emission in UV-visible range.The 980 nm excitation has generated UV emission at 314 nm in tridoped phosphor due to the energy transfer from Tm^(3+) to Gd^(3+)ion.Characteristic emission bands from Tm^(3+) are also observed in both the phosphors.Thermally coupled Stark sublevels ^(1)G_(4(a))(476 nm) and ^(1)G_(4(b))(488 nm) of Tm^(3+) ion were utilised for optical thermometry using fluorescent intensity ratio(FIR) method.The result shows that maximum absolute sensitivity in tridoped phosphor is observed to be 1.33 × 10^(-3) K^(-1) at 298 K.Moreover,temperature rise of phosphor at various pump power densities was also measured and it is estimated to achieve 407 K at the pump power density of 38.46 W/cm^(2).
基金Project supported by the National Natural Science Foundation of China (11904046,11974069,11504039)。
文摘In this work,tunable white up-conversion luminescence was achieved in the Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) codoped Na_(3)La(VO_(4))_(2) phosphors under 980 nm excitation.The emissions of three primary colors are mainly attributed to the ~2H_(11/2)/~4S_(3/2)→~4I_(15/2) transitions of Er^(3+),~1G_(4)→~3H_6 transition of Tm^(3+),and_5F_5→~5I_8 transition of Ho^(3+).White luminescence characteristics and mechanisms of up-conversion system were investigated in detail.In addition,the temperature sensing behaviors of multiple levels emission combinations for Na_(3)La(VO_(4))_(2):Yb^(3+),Er^(3+),Tm^(3+),Ho^(3+) were analyzed by employing thermally coupled and non-thermally coupled energy levels.Based on the emissions of ~3F_(2,3)/~1G_(4) energy levels,the maximum relative and absolute sensitivities were obtained to be 2.20%/K and 0.279 K^(-1).The design of up-conversion luminescence materials with high-quality white luminescence and excellent sensitivity performance is critical in the field of optical applications.
文摘A kind of photonic crystal (PC) micro-cavity sensor based on magnetic fluid (MF) filling is designed with simulation model. Generally, many sensors’ designs are based on a universal temperature in the whole structure. However, strong photothermal effect in high Q micro-cavities will lead to different temperatures between cavities and environment inevitably. In many theoretical PC sensor designs, researchers neglected the different temperature between environment and cavities. This simple hypothesis will probably lead to failure of sensor design and get wrong temperature. Moreover, few theoretical or experimental works have been done to study optical cavity’s heating process and temperature. We propose that researchers should take seriously about this point. Here, the designed cascaded micro-cavity structure has three spectral lines and a reversible sensitivity matrix, which can simultaneously detect magnetic field, ambient temperature and MF micro-cavity temperature. It can solve the magnetic field and temperature cross-sensitivity problem, and further, distinguish the different temperatures of environment and magnetic fluid cavities. The influence of hole radius and slab thickness on the depth and Q value of the resonant spectral line are also studied. Responses of three dips to magnetic field, ambient temperature and MF micro-cavity temperature are simulated, respectively, where dip 1 belongs to MF cavity 1, dip 2 and dip 3 belong to MF cavity 2. The obtained magnetic field sensitivities are 2.89 pm/Oe, 4.57 pm/Oe, and 5.14 pm/Oe, respectively;the ambient temperature sensitivities are 65.51 pm/K, 50.94 pm/K, and 58.98 pm/K, respectively;and the MF micro-cavity temperature sensitivities are −14.41 pm/K, −17.06 pm/K, and −18.81 pm/K, respectively.
基金supported by the National Natural Science Foundation of China(U21A20441)the Nuclear Power Development Programme,the Key Research and Development Program of Sichuan Province(2021YFG0375)+2 种基金the Key Science and Technology Project of Sichuan Province(2020ZDZX0012)the Science and Technology Planning Project of Dazhou(21DWHZ0005)the Cooperation Project of Sichuan University and Dazhou(2021CDDZ-02).
文摘Pr-doped metal oxide polycrystalline transparent ceramics are highly desirable for photothermal window systems served in extreme environments;however,obtaining efficient photoluminescence(PL)together with high transparency in these ceramics is still posing serious challenges,which undoubtedly limits their applications.Here,Pr-doped Y_(2)Zr_(2)O_(7)(YZO)transparent ceramics,as an illustrative example,are prepared by a solid-state reaction and vacuum sintering method.Owing to the elimination of defect clusters[Pr_(Y)^(4+)-O^(2-)Pr_(Y)^(4+)]and[Pr_(Y)^(4+)-e′]without the introduction of impurities and additional defects,the fabricated YZO:Pr ceramics exhibit high transparency(74%)and efficient PL(39-fold enhanced)after air annealing plus vacuum re-annealing treatment.Moreover,upon 295/450 nm excitation,the emission bands(blue,green,red,and dark red)from YZO:Pr ceramics present different temperature-dependent properties due to the thermalquenching channel generated by the intervalence charge transfer(IVCT)state between Pr_(Y)^(4+)and Zr^(4+)ions.Furthermore,a self-calibrated temperature feedback window with the same fluorescence intensity ratio(FIR)model(I_(613)/I_(503),where I represents the intensity)under different excitation light sources(295 and 450 nm)is designed.The developed photothermal window operated in a wide temperature range(303-663 K)shows relatively high sensitivities(absolute sensitivity(Sa)and relative sensitivity(S)reach 0.008 K^(-1)at 663 K and 0.47%K^(-1)at 363 K,respectively),high repeatability(>98%),and low temperature uncertainty(T<3.2 K).This work presents a paradigm for achieving enhanced PL along with elevated transparency of lanthanide(Ln)-doped ceramics through vacuum re-annealing treatment engineering and demonstrates their promising potential for photothermal window systems.
基金supported by Taif University Researchers Supporting Project number(TURSP-2020/347),Taif University,Taif,Saudi Arabia.
文摘The probability of medical staff to get affected from COVID19 is much higher due to their working environment which is more exposed to infectious diseases.So,as a preventive measure the body temperature monitoring of medical staff at regular intervals is highly recommended.Infrared temperature sensing guns have proved its effectiveness and therefore such devices are used to monitor the body temperature.These devices are either used on hands or forehead.As a result,there are many issues in monitoring the temperature of frontline healthcare professionals.Firstly,these healthcare professionals keep wearing PPE(Personal Protective Equipment)kits during working hours and as a result it would be very difficult to monitor their body temperature.Secondly,these healthcare professionals also wear face shields and in such cases monitoring temperature by exposing forehead needs removal of face shield.Doing so after regular intervals is surely uncomfortable for healthcare professionals.To avoid such issues,this paper is disclosing a technologically advanced face shield equipped with sensors capable of monitoring body temperature instantly without the hassle of removing the face shield.This face shield is integrated with a built-in infrared temperature sensor.A total of 10 such face shields were printed and assembled within the university lab and then handed over to a group of ten members including faculty and students of nursing and health science department.This sequence was repeated four times and as a result 40 healthcare workers participated in the study.Thereafter,feedback analysis was conducted on questionnaire data and found a significant overall mean score of 4.59 out of 5 which indicates that the product is effective and worthy in every facet.Stress analysis is also performed in the simulated environment and found that the device can easily withstand the typically applied forces.The limitations of this product are difficulty in cleaning the product and comparatively high cost due to the deployment of electronic equipment.
基金financially supported by the Reform and Development Fund Project of Local University supported by the Central Government,the National Natural Science Foundation of China (No.21771060)Heilongjiang Provincial Natural Science Foundation of China (No.LH2023B021)+1 种基金the Basic Scientific Research Expenses of Colleges and Universities in Heilongjiang Province (No.2022-KYYWF-1106)New Era Excellent Master's and Doctoral Dissertations of Heilongjiang Province (No.LJYXL2022-019)。
文摘Effectively monitoring of hazardous gases has become increasingly important for ecological environment and human health.As an emerging component of two-dimensional materials,layered metal dichalcogenides are gaining significant attention due to their unique physical and chemical properties,thus catering well to the gas sensing application.Particularly,tin disulfide(SnS_(2))has been widely examined recently owing to its low-cost,earth-abundant,and environmental friendliness features,which meet the requirements of advanced sensing platforms.Herein,the booming research advancements of SnS_(2)-based gas sensors have been presented.Firstly,the basic attributes of SnS_(2) and its ability to detect various hazardous gases are introduced.Secondly,innovative approaches that have demonstrated the effectiveness of improving the room temperature sensing performance of SnS_(2) are summarized.Finally,the major challenges and future opportunities of SnS_(2) are also outlined.It is ultimately expected that this timely review could offer guidance for designing high-performance gas sensing materials and further push forward their potential applications.